Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Анализ связи между двумя переменнымиСодержание книги
Поиск на нашем сайте
Хотя результаты одномерного анализа данных часто имеют самостоятельное значение, большинство исследователей уделяют основное внимание анализу связей между переменными. Самым простым и типичным является случай анализа взаимосвязи (сопряженности) двух переменных. Используемые здесь методы задают некоторый логический каркас, остающийся почти неизменным и при рассмотрении более сложных моделей, включающих множество переменных. Устойчивый интерес социологов к двумерному и многомерному анализу данных объясняется вполне понятным желанием проверить гипотезы о причинной зависимости двух и более переменных. Ведь утверждения о причинных взаимосвязях составляют фундамент не только социальной теории, но и социальной политики (по крайней мере, так принято считать). Так как возможности социологов проверять причинные гипотезы с помощью эксперимента, как уже говорилось, ограниченны, основной альтернативой является статистический анализ неэкспериментальных данных. В общем случае для демонстрации причинно-следственного отношения между двумя переменными, скажем, X и Y, необходимо выполнить следующие требования: 1) показать, что существует эмпирическая взаимосвязь между переменными; 2) исключить возможность обратного влияния Y на Х; 3) убедиться, что взаимосвязь между переменными не может быть объяснена зависимостью этих переменных от какой-то дополнительной переменной (или переменных). Первым шагом к анализу взаимоотношений двух переменных является их перекрестная классификация, или построение таблицы сопряженности. Речь идет о таблице, содержащей информацию о совместном распределении переменных. Допустим, в результате одномерного анализа данных мы установили, что люди сильно различаются по уровню заботы о своем здоровье: некоторые люди регулярно делают физические упражнения, другие — полностью пренебрегают зарядкой. Мы можем предположить, что причина этих различий — какая-то другая переменная, например, пол, образование, род занятий, доход и т. п. Пусть мы располагаем совокупностью данных о занятиях физзарядкой и образовании для выборки горожан. Для простоты мы предположим, что обе переменные имеют лишь два уровня: высокий и низкий. Так как данные об образовании исходно разбиты на большее количество категорий, нам придется их перегруппировать, разбив весь диапазон значений на два класса. Предположим, мы выберем в качестве граничного значения 10 лет обучения, так что люди, получившие неполное среднее и среднее образование, попадут в «низкую» градацию, а остальные — в «высокую». (Это, конечно, большое огрубление, но мы используем его из соображений простоты.) Для занятий физическими упражнениями мы соответственно воспользуемся двумя категориями — «делают физзарядку» и «не делают физзарядку». Таблица 8.3 показывает, как могло бы выглядеть совместное распределение этих двух переменных. Таблица 8.3 Взаимосвязь между уровнем образования и занятиями физкультурой
В таблице 8.3 два столбца (для образования) и две строки (для занятий физкультурой), следовательно, размерность этой таблицы 2x2. Кроме того, имеются дополнительные крайний столбец и крайняя строка (маргиналы таблицы), указывающие общее количество наблюдений в данной строке или в столбце. В правом нижнем углу указана общая сумма, т. е. общее число наблюдений в выборке. Не давшие ответа уже исключены (для реальных данных их число также стоит указать, но не в таблице, а в подтабличной сноске). Заметим здесь, что многие исследователи при построении таких таблиц пользуются неписаным правилом: для той переменной, которую полагают независимой, отводится верхняя строка (горизонталь), а зависимую располагают «сбоку», по вертикали (разумеется, соблюдение этого правила не является обязательным и ничего с точки зрения анализа не меняет). Обычно характер взаимоотношений между переменными в небольшой таблице можно определить даже «на глазок», сравнивая числа в столбцах или строках. Еще легче это сделать, если вместо абсолютных значений стоят проценты. Чтобы перевести абсолютные частоты, указанные в клетках таблицы, в проценты, нужно разделить их на маргинальные частоты и умножить на 100. Если делить на маргинал столбца, мы получим процент по столбцу. Например, %, т. е. 19,6% имеющих низкий уровень образования делают зарядку (но не наоборот!). Если делить на маргинал строки, то мы получим другую величину — процент по строке. В частности, можно заметить, что 80% делающих зарядку, составляют люди с высоким уровнем образования Деление на общую численность выборки дает общий процент. Так, всего в выборке 50% людей, делающих зарядку. Так как вывод о наличии взаимосвязи между переменными требует демонстрации различий между подгруппами по уровню зависимой переменной, при анализе таблицы сопряженности можно руководствоваться простыми правилами. Во-первых, нужно определить независимую переменную и, в соответствии с принятым определением, пересчитать абсолютные частоты в проценты. Если независимая переменная расположена по горизонтали таблицы, мы считаем проценты по столбцу; если независимая переменная расположена по вертикали, проценты берутся от сумм по строке. Далее сравниваются процентные показатели, полученные для подгрупп с разным уровнем независимой переменной, каждый раз внутри одной категории зависимой переменной (например, внутри категории делающих зарядку). Обнаруженные различия свидетельствуют о существовании взаимосвязи между двумя переменными. (В качестве упражнения примените описанную процедуру к таблице 8.3, чтобы убедиться в наличии связи между уровнем образования и занятиями физкультурой.) Отметим специально, что элементарная таблица сопряженности размерности 2x2 — это минимально необходимое условие для вывода о наличии взаимосвязи двух переменных. Знания о распределении зависимой переменной недостаточно. Нельзя, например, утверждать, будто из того, что 75% детей-первенцев имеют интеллект выше среднего, а 25% — средний и более низкий, следует зависимость между порядком рождения и интеллектом. Необходимо проанализировать и распределение показателей интеллекта для детей-непервенцев. Варьировать должна не только зависимая, но и независимая переменная. Для таблиц размерности 2 х 2 и более можно рассчитать специальные показатели (статистики), дающие суммарное выражение степени взаимосвязи, ассоциации между двумя переменными. Таких мер связи довольно много. Для случая двух номинальных переменных существуют два основных подхода к подсчету коэффициентов взаимосвязи. Проанализировав их общую логику, мы получим возможность ориентироваться в многообразии конкретных показателей, предлагаемых прикладными программами анализа данных. Первый подход базируется на статистике, называемой «хи-квадрат». На ее основе можно рассчитать несколько коэффициентов взаимосвязи. Рассмотрим в качестве примера коэффициент «фи» (греч.j), формула для которого была впервые предложена сэром Карлом Пирсоном в 1901 году специально для того, чтобы сделать возможным анализ взаимосвязи между двумя переменными, измеренными на неколичественном уровне. Таблица 8.4
|
|||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 247; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.165.235 (0.006 с.) |