Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Двигательная и всасывательная функция пищеварительного трактаСодержание книги
Поиск на нашем сайте
В раннем постнатальном периоде Моторика. Сосательный рефлекс формируется в эмбриогенезе рано и уже к 21-24 неделе приобретает характер координированной реакции. В течение первых дней жизни ребенка акт сосания становится более автоматизированным и совершенным, и имеет природу безусловного (врожденного) рефлекса. Он возникает при раздражении рецепторов губ, импульсы от которых проводятся по чувствительным волокнам тройничного нерва в центр сосания (продолговатый и средний мозг). По эфферентным волокнам тройничного и лицевого нервов импульсы проводятся к мышцам языка, челюстей и губ. Уже на 10 день может наблюдаться условно-рефлекторный акт сосания, связанный с положением ребенка при кормлении, прикосновением к щечкам. Моторная функция желудка у детей раннего возраста замедлена, перистальтика вялая, что связано с недостаточно развитыми рефлекторными механизмами регуляции. При грудном вскармливании пища из желудка эвакуируется через 2-3 часа, при искусственном - через 3-4 часа. Моторика кишечника у детей более энергичная, чем у взрослых. Время прохождения пищевой кашицы по кишечнику у новорожденного от 4 до 18 часов, у грудных детей - около 24 часов, при искусственном вскармливании - около 2-х суток. Акт дефекации у грудных детей происходит рефлекторно с частотой 4-5 раз в сутки у новорожденных, 2-3 раза - у грудных детей, к концу года 1-2 раза. Здоровый ребенок должен приучатся к произвольной дефекации в конце первого года жизни. Всасывание. Большой объем мембранного гидролиза пищевых субстратов (70-80%) и его функциональное единство с транспортными системами обеспечивают высокую скорость всасывания в кишечнике у детей грудного возраста. Эпителий кишечника в раннем возрасте отличается повышенной проницаемостью, вследствие чего в кровь могут поступать продукты неполного гидролиза пищевых веществ, токсины и быть возможной причиной различных аллергических состояний, токсикозов. Крупномолекулярные белки - иммуноглобулины и гормоны материнского молока, некоторое количество казеина всасываются в неизмененном виде пиноцитозным путем, в основном, в период новорожденности. Наряду с активным транспортом аминокислот в кишечнике всасываются различные пептиды. Одни из них подвергаются гидролизу в энтероцитах при помощи внутриклеточных или лизосомальных ферментов. Другие попадают в кровь, а затем в почечный эпителий, где превращаются в аминокислоты. В связи с этим трудно гидролизуемые белки, содержащиеся в питательных смесях, могут стать причиной почечных заболеваний детей-искусственников. Всасывание моносахаридов осуществляется как активным транспортом (глюкоза, галактоза), так и пассивной диффузией. Жиры грудного молока всасываются лучше, чем коровьего, так как они полностью гидролизуются.
Занятие4 Тема: ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ. ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ РАЦИОНАЛЬНОГО ПИТАНИЯ
План занятия
Вопросы к занятию 1. Понятие основного и рабочего обмена. Значение определения основного обмена у человека. 2. Исследование энергетических затрат: а) прямая калориметрия б) непрямая калориметрия, дыхательный коэффициент, калорический эквивалент кислорода и их значение в определении обмена. 3. Пластическая, энергетическая и физиологическая ценность пищи. 4. Физиологические основы рационального питания человека. 5. Нормы потребления белков, жиров и углеводов.
Дополнительно для студентов педиатрического факультета 1.Особенности энергетического и пластического обмена у новорожденных. 2.Возрастные изменения величины основного обмена. Литература 1. Физиология человека/под ред. В.М.Покровского, Коротько Г.Ф., 2003. Стр.451-479. 2. Основы физиологии человека / Под ред. Б.И.Ткаченко, 1994. Т.1, с.447-467, 474-479. 3. Общий курс физиология человека и животных / Под ред. А.Д.Ноздрачева, 1991. Т.2. 4. Физиология человека / Под ред. Р.Шмидта, Г.Тевса, 1996. Т.3, с.653-664. 5. Физиология плода и детей / Под ред.Глебовского, 1988. с.106-118. Обмен веществ и энергии В организме постоянно идут процессы обновления клеточных структур, ферментов, белков плазмы, гормонов и т.д. Обновление связано с расщеплением органических соединений (катаболизм) и синтезом вновь образуемых веществ (анаболизм). С пищей в пищеварительную систему поступают белки, жиры и углеводы, которые ферментативно гидролизуются до соответствующих мономеров. Из последних синтезируются собственные белки, липиды и углеводы, которые организм использует для энергетических и пластических целей. При окислении питательных веществ освобождается потенциальная энергия их химических соединений (предмет изучения биологической химией), которые используются для кинетических процессов, например, сокращение мышц, работы K - Na – АТФ-азы и другие. Кинетическая энергия превращается в тепловую, частично в электрическую. Пластические функции белков, липидов и углеводов связаны с синтезом новых органических веществ. Обмен белков Обмен белков в большей мере используется организмом для пластического обмена. Разнообразные по молекулярной массе составу и свойствам белки представляют собой различные комбинации из 20 аминокислот. 12 аминокислот синтезируются в организме человека (заменимые), а 8 (незаменимые) обязательно должны поступать в организм с пищей. Незаменимыми аминокислотами являются: лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан. Дефицит этих кислот приводит к нарушению синтеза белка, замедлению роста, уменьшению массы тела, отрицательному азотистому балансу. Белки пищи существенно различаются по аминокислотному составу. В связи с этим введено понятие биологической ценности белков пищи. Белки, содержащие весь необходимый набор аминокислот (по составу и количеству), который обеспечивает нормальные процессы синтеза, являются биологически полноценными белками. Белки, не содержащие каких-либо аминокислот, особенно незаменимых, являются неполноценными. О характере белкового обмена судят по азотистому балансу. Азотистый баланс - это соотношение количества азота, поступившего в организм с пищей, и выделенного из него. Количество азота, поступившего в организм больше, так как часть азота теряется с калом. Основным источником азота в организме является белок: 1 г азота содержится в 6,25 г белка. Количество усвоенного азота определяют по его содержанию в пище за вычетом содержания в кале. Умножив, количество определенного азота на 6,25 определяют количество усвоенного белка. О количестве разрушенного белка судят по количеству азота, выведенному из организма с мочой в составе азотсодержащих продуктов белкового обмена (мочевина, мочевая кислота, креатинин). Часть этих веществ может секретироваться с потом, но если потоотделение незначительное – этим можно пренебречь. Количество азота в моче умноженное на 6,25 показывает, какое количество белка распалось в организме. Если количество введенного в организм азота равно выведенному количеству, говорят об азотистом равновесии. Когда поступление азота больше его выделения, наблюдается положительный азотистый баланс. Значит, синтез белка преобладает над его распадом. Такое состояние наблюдается в период роста организма, во время беременности, при усиленных спортивных тренировках, в результате которых увеличивается масса мышц. Отрицательный азотистый баланс (количество выведенного азота больше поступившего) наблюдается при белковом голодании, при питании неполноценными белками. Особенно опасна недостаточность белкового питания растущих организмов: кроме замедления интенсивности роста ослабляется иммунитет, нарушается кроветворение, снижаются функции печени и поджелудочной железы. Белковая недостаточность возможна при неудовлетворении повышенной потребности организма в белках у беременных, при кормлении ребенка грудью, при одностороннем углеводно-жировом питании, у вегетарианцев, потребляющих только растительную пищу. Регуляцию обмена белков осуществляют: соматотропный гормон (гормон роста) аденогипофиза, тироксин и трийодтиронин – гормоны щитовидной железы. Эти гормоны увеличивают синтез белка. Распад белков в мышечной и лимфоидной тканях стимулируют гормоны коры надпочечников - глюкокортикоиды, но одновременно увеличивают синтез белка в печени. Обмен липидов Нейтральные жиры состоят из смеси различных триглицеридов и представляют собой эфиры глицерина и трех жирных кислот. Свойства жиров определяют жирные кислоты. Различают насыщенные (до предела насыщенные водородом) и ненасыщенные жирные кислоты (с двойными связями). Они входят в состав жиров животного и растительного происхождения, обладают высокой энергетической ценностью. Липоиды – это стерины (холестерин и фитостерины), фосфолипоиды (лицетин, сфингомиелин, кефалины) играют важную роль с построении клеточных и митохондриальных мембран. Липоиды и нейтральные жиры объединены в группу липидов. Таким образом, липиды необходимы для энергетического и пластического обмена, кроме того, с ними в организм поступают жирорастворимые витамины. Насыщенные жирные кислоты (олеиновая, стеариновая, пальметиновая и др.) в большом количестве содержатся в составе животных жиров. В животных жирах содержится большое количество холестерина, с увеличением количества которого в крови связывают развитие атеросклероза. Но, в то же время холестерин необходим для синтеза витамина D, желчных кислот, гормонов половых желез и коры надпочечников. Полиненасыщенные жирные кислоты – линолевая, линоленовая, арахидоновая получили название незаменимых жирных кислот. Они не синтезируются в организме, но необходимы для синтеза простагландинов; они повышают резистентность организма к неблагоприятным факторам, регулируют холестериновый обмен и обеспечивают структурно-функциональную целостность биологических мембран. Жир, всасывающийся из кишечника, поступает в основном в лимфу и небольшое количество в кровь; накапливается в жировой ткани, которая играет роль жирового депо или включается в состав клеточных структур. Общее количество жира в организме человека составляет 10 – 20% от массы тела, но может при ожирении достигать 50%. Запасный жир используется для энергетических целей. Следует отметить, что состав жира в жировых депо зависит от характера потребляемых жиров. В тех случаях, когда животные или человек длительное время употребляет один вид жира, в их депо откладывается жир идентичный данному виду. Синтез жира в организме происходит из углеводов при обильном потреблении последних. Регуляция обмена липидов связана с углеводным обменом и осуществляется эндокринной и вегетативной нервной системами. Мобилизацию жира из депо производят гормоны адреналин и норадреналин, соматотропный гормон и гормон тироксин. Глюкокортикоиды тормозят мобилизацию жира. Активация симпатической нервной системы тормозит синтез жиров и увеличивает их распад, парасимпатические влияния, наоборот, способствуют отложению жира. Обмен углеводов Глюкоза является главным источником энергии для жизнедеятельности клеток, а также используется в качестве пластического материала для синтеза многих органических веществ (гликопротеины, гликолипиды и т.д.). Уровень глюкозы в крови колеблется в пределах 3,3 - 5,5 ммоль/л. При снижении уровня глюкозы до 2,2 – 1,7 ммоль/л развиваются судороги, потеря сознания. Такое состояние называется гипогликемической комой, возникает оно потому что глюкоза является основным источником энергии для ЦНС. При окислении глюкозы образуются молекулы АТФ, которые используются в различных клеточных процессах. Несмотря на то, что энергетическая ценность глюкозы меньше, чем жиров, она используется для срочного извлечения энергии при больших энергетических затратах (интенсивная мышечная работа, эмоциональное возбуждение). Это связано с тем, что глюкоза быстро мобилизуется из депо, легко окисляется при минимальном потреблении кислорода, промежуточные продукты окисления не токсичны. При увеличении всасывания глюкоза депонируется в печени и в мышцах в виде гликогена. У взрослого человека количество гликогена в печени 150-200г (это резервная глюкоза, которая используется для нужд всего организма). Гликоген мышц является источником энергии только для мышечного сокращения. Если уровень глюкозы в крови повышается до 8,9 – 10,0 ммоль/л за счет увеличенного всасывания из кишечника, часть глюкозы оказывается в моче (пищевая глюкозурия). При продолжительном снижении количества глюкозы в крови углеводы (гликоген) образуются из белков и жиров. Регуляцию углеводного обмена мы будем с Вами подробно изучать в разделе «Эндокринология». Здесь же только отметим, что единственным гормоном, целенаправленно снижающим уровень глюкозы в крови, является инсулин – гормон β-клеток поджелудочной железы. Дефицит этого гормона приводит к стабильной гипергликемии и глюкозурии (сахарный диабет). Гормоны, повышающие содержание глюкозы в крови (контринсулярные гормоны), - глюкагон- гормон α-клеток поджелудочной железы, адреналин – гормон мозгового вещества надпочечников, соматотропный гормон передней доли гипофиза, глюкокортикоиды – гормоны пучковой зоны коры надпочечников. Витамины не имеют калорической и пластической ценности, но они в минимальных количествах необходимы для нормальной жизнедеятельности организма. Витамины обладают высокоспецифичными и разнообразными функциями: входят в состав ферментов и коферментов, участвуют в процессах всасывания, обмена ионов, углеводов, белков, жиров, являются антиоксидантами; влияют на образование межклеточных структур, кроветворение, укрепляют иммунную систему. Витамины подразделяются на жирорастворимые и водорастворимые. Жирорастворимые витамины (А, Д, Е, К) и водорастворимые витамины (группы В, С, Р). Поступают витамины в организм только с пищевыми продуктами животного и растительного происхождения, и только микрофлора кишечника синтезирует витамины К и некоторые из группы В. Одни витамины запасаются в организме (А, Д), другие должны постоянно поступать с пищей. Отсутствие или недостаток, какого – либо витамина вызывает специфические для него заболевания. Например, дефицит аскорбиновой кислоты (витамин С) приводит к хрупкости кровеносных сосудов и кровоточивости, снижению иммунитета, повышенной утомляемости. Дефицит витамина Д в детском возрасте нарушает образование костной ткани, сократительную способность мышц, проведение возбуждения в синапсах (рахит). В тоже время передозировки витаминов, особенно А и Д могут оказывать на организм токсическое действие. В этом пособии не ставится цель подробного описания физиологической роли витаминов. В настоящее время имеется достаточное количество литературы с информацией о значении витаминов, источниках их содержания и суточных потребностях в них. Механизм действия витаминов изучает кафедра биологической химии. Обращаем Ваше внимание на тот факт, что не только будущий врач, но и каждый культурный человек должен владеть этой информацией, чтобы вовремя помочь себе и окружающим людям. Рекомендуем открыть учебник «Физиология человека» под редакцией В.М. Покровского. 2003г. стр. 472 – 474. (или имеющуюся литературу).
|
||||||||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 170; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.73.6 (0.01 с.) |