Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов

Поиск

Как было показано выше, для расчета электрофизических характеристик и геометрических размеров слоев выпрямительного элемента достаточно задания таких параметров диода, как URRM и IFAV. Однако кроме них на проектируемый диод могут быть заданы ограничения и по ряду других параметров, не затрагиваемых при его проектировании. Поэтому после расчета основных параметров проектируемого диода следует проверить, удовлетворяются ли другие требования. Если расчетные значения всех параметров удовлетворяют заданным, то расчеты на этом заканчиваются. В противном случае необходимо внести корректировки в расчет диода.

Одним из ограничивающих параметров выпрямительных диодов является импульсное прямое напряжение UFM — наибольшее мгновенное значение прямого напряжения на диоде. Оно измеряется при мгновенном максимальном значении прямого тока, равном предельному току IFAV, умноженному на π,

Для нахождения UFM при выбранном значении диаметра выпрямительного элемента по формуле (1.4.5) рассчитывается активная площадь структуры, а затем определяется максимальное значение плотности тока в прямом направлении

 

. (1.5.1)

 

Далее исходя из ВАХ диода единичной площади по (1.4.7) находится значение прямого падения напряжения UFM. К нему можно добавить падение напряжения на омических контактах, не учитываемое в вышеуказанных выражениях. Для силовых выпрямительных диодов оно составляет 0,05 В.

По обратному току ограничивающим параметром обычно является повторяющийся импульсный обратный ток диода IRRM — наибольшее мгновенное значение обратного тока, обусловленное повторяющимся импульсным обратным напряжением URRM. Измеряется IRRM при максимально допустимой температуре перехода Tjm.

Обратный ток реального диода состоит из нескольких составляющих:

 


IR = IS + Ig + IУТ + IПОВ + IКАН, (1.5.2)

 

где IS — ток насыщения; Ig — ток термогенерации; IУТ — ток утечки по поверхности; IПОВ — поверхностный ток; IКАН — канальный ток.

Некоторые из них, такие, как IУТ и IКАН аналитически не рассчитываются. Поверхностный ток содержит трудно определяемую скорость поверхностной рекомбинации. Поэтому при расчете обратного тока обычно ограничиваются двумя составляющими — током насыщения и генерационным током.

Ток насыщения — это ток, обусловленный носителями заряда, экстрагируемыми обратносмещённым р — n-переходом из базовых областей. Наиболее общее выражение для плотности тока насыщения, имеет вид:

 

. (1.5.3)

 

где ni-собственная концентрация, – диффузионная длина.

В диффузионных р — n-переходах обычно диффузионная область получается значительно сильнее легированной, чем другая базовая область, представляющая собой исходный материал. В этом случае в выражении для плотности тока насыщения одной составляющей (электронной для р+ - n-перехода и дырочной для n+ — p-перехода) можно пренебречь.

Температурная зависимость параметров, входящих в (1.5.3) представлена ниже.

 

, (1.5.4)


, (1.5.5)

, (1.5.6)

 

где Tn=T/300; T- температура по шкале Кельвина.

Плотность генерационного тока, как правило, вычисляется в предположении, что энергетические уровни генерационно-рекомбинационных центров находятся вблизи середины запрещенной зоны:

 

. (1.5.7)

 

где l (URRM) — ширина области объемного заряда при повторяющемся импульсном обратном напряжении.

Для экспоненциального р — n-перехода ширина области объемного заряда может быть найдена по формулам [1]:

 

при l > 4λ, (1.5.8)

при l ≤ 20λ. (1.5.9)

 

Если расширение области объемного заряда в базу ограничивается сильнолегированной n+ или р+ - областью то после определения l следует вычислить распространение области объемного заряда в базовые области по формулам:


, (1.5.10)

. (1.5.11)

 

И если ln при напряжении URRM окажется больше dn (см. рисунок 1.4.1), то ширину области объемного заряда следует найти по формуле

 

, (1.5.12)

 

Генерационное время жизни τg обычно принимается равным времени жизни носителей заряда в базовых областях. Если эти значения различаются, то в качестве τg берется среднее геометрическое от времени жизни неосновных носителей заряда в базовых областях

 

. (1.5.13)

 

После определения плотностей тока насыщения и генерационного тока рассчитывается повторяющийся импульсный обратный ток диода

 

. (1.5.14)

 

Площадь S, входящая в это выражение, в случае выпрямительного элемента с фаской отличается от SАКТ для прямого направления. Обратный ток диода формируется в области объемного заряда, и в качестве S необходимо брать площадь структуры в плоскости металлургического перехода (пунктирная линия на рисунке 1.4.2), что практически совпадает с площадью большего омического контакта:

 

. (1.5.15)


РАССЧЕТНАЯ ЧАСТЬ

 



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 203; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.200.223 (0.008 с.)