Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

По проектированию и конструированию полупроводниковых приборов

Поиск

ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ

По проектированию и конструированию полупроводниковых приборов

 

1. Тема: Расчет выпрямительного диффузионного диода.

2. Срок представления курсового проекта к защите:

3. Исходные данные для проектирования:

3.1 Повторяющееся импульсное обратное напряжение: URRM = 2000 B.

3.2 Максимально допустимый прямой ток: IFAV = 350 A.

3.3 Обратный допустимый ток: IRRM ≤ 3 мА.

3.4 Прямое падение напряжения: UFM ≤ 1,5 В.

4. Содержание пояснительной записки курсового проекта.

4.1 Расчет удельного сопротивления исходного кристалла.

4.2 Расчет геометрических размеров слоев выпрямительного элемента.

4.3 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода.

4.4 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов.

5. Перечень графического материала.

5.1 Вольт амперная характеристика диода единичной площади.

5.2 Графики зависимости выделяемой и отводимой мощности от диаметра выпрямительного элемента.

5.3 Структура выпрямительного элемента.

 


РЕФЕРАТ

 

Пояснительная записка содержит 32 страницы печатного текста, 2 рисунка, 3 таблицы, 3 приложения, при написании использовалось 3 источника литературы.

выпрямительный элемент, экспоненциальная модель, диффузионный профиль, удельное сопротивление, напряжение пробоя, область пространственного заряда, прямой ток, диод.

Объектом разработки является выпрямительный диффузионный диод.

Цель работы - проектирование выпрямительного диффузионного диода.

Методы разработки - аналитический расчет.

Полученные результаты: по заданным электрическим параметрам определены технологические параметры изготовления выпрямительного элемента, разработана структура диода.

Основные конструкционные и эксплуатационные характеристики: Повторяющееся импульсное обратное напряжение URRM = 2000 B, максимально допустимый прямой ток IFAV = 350 A, обратный допустимый ток IRRM ≤ 70 мА, прямое падение напряжения UFM ≤ 1,5 В. Удельное сопротивление исходного кристалла r = 70 Ом×см, толщина структуры W = 270 мкм, глубина залегания p - n-перехода xj = 55 мкм, параметры диффузии Dt = 2,17 ×10-6 см-2, диаметр выпрямительного элемента dВ = 24 мм. Максимальная температура корпуса TC = 140°C.

Область применения:разработанный диод может применяться в любой силовой аппаратуре, где необходимо его использование и соблюдаются условия эксплуатации.

 


СОДЕРЖАНИЕ

 

Введение

1. Теоретическая часть

1.1 Выбор материала диода и типа проводимости исходного кристалла

1.2 Определение удельного сопротивления исходного кристалла

1.3 Расчет геометрических размеров слоев выпрямительного элемента

1.4 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода

1.5 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов

2. Расчетная часть

2.1 Расчет удельного сопротивления исходного кристалла

2.2 Расчет геометрических размеров слоев выпрямительного элемента

2.3 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода

2.4 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов

Заключение

Список использованных источников

Приложение А

Приложение Б

Приложение В

 


ВВЕДЕНИЕ

 

Целью данного курсового проекта является определение основных электрических, технологических и эксплуатационных параметров выпрямительного диффузионного диода на основании заданной структуры (характера распределения примеси) и электрических характеристик.

Проектирование полупроводниковых приборов является сложной задачей, требующей фундаментальных знаний в области физики полупроводников и полупроводниковых приборов, полупроводниковой технологии и т. д. Физические процессы в полупроводниковых приборах в большинстве случаев описываются системой нелинейных дифференциальных уравнений в частных производных, не имеющих аналитических решений. Точный расчет в них возможен лишь численными методами. На этапе обучения более целесообразно приобретение навыков проектирование на основе аналитических формул и выражений для закрепления навыков расчета полупроводниковых приборов.

Не смотря на то, что при расчете применялись аналитические формулы, которые применимы только в некотором приближении, все же благодаря приобретенным навыкам, для каждого конкретного случая были подобраны те соотношения, которые дают наименьшую погрешность расчета. Вследствие чего был разработан диод, который легко изготовить в стандартном технологическом цикле, причем все электрические и эксплуатационные характеристики будут соответствовать заданным.

Экономический расчет проекта не проводился.

Новизны в работе нет, так как проектирование проводилось по материалам научной литературы.


ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Выбор материала диода и типа проводимости исходного кристалла

 

В настоящее время выпрямительные диоды почти целиком изготавливаются на основе германия и кремния. Такие материалы, как арсенид галлия и карбид кремния, пока еще не получили широкого распространения из-за сложной технологии получения и обработки.

Кремниевые выпрямительные диоды обладают рядом преимуществ по сравнению с германиевыми. Благодаря тому, что у кремния больше ширина запрещенной зоны, кремниевые диоды имеют более высокие рабочие температуры (до 190 °С против 85 °С для германиевых диодов). Вследствие этого они могут работать при более высоких плотностях токов в прямом направлении.

Из-за более широкой запрещенной зоны в кремнии концентрация собственных носителей заряда ni на два порядка меньше, чем в германии, в результате кремниевые диоды имеют обратные токи в тысячи раз меньше германиевых. Кремниевые диоды выдерживают большие обратные напряжения, определяемые лавинным пробоем р — n-перехода. В то время как в германиевых диодах (вследствие относительно больших обратных токов) раньше может развиться тепловой пробой. Этому способствует и меньшее значение коэффициента теплопроводности германия.

Недостатком кремниевых диодов является сравнительно большое падение напряжения в прямом направлении. Из-за различия в ширине запрещенной зоны в кремниевых р — n-переходах высота потенциального барьера (при одинаковых уровнях легирования базовых областей) в 1,5 — 2,0 раза превышает высоту потенциального барьера германиевых р — n-переходов. Примерно во столько же раз и падение напряжения на р — n-переходе в кремниевых диодах будет больше.

Исходный кристалл для выпрямительных диодов может иметь проводимость как n-, так и p-типа. Но поскольку в германии и кремнии подвижность электронов заметно превышает подвижность дырок, то предпочтительнее использовать исходные материалы электронного типа проводимости, так как в этом случае падение напряжения будет меньше.

На выбор типа проводимости исходного кристалла может влиять состояние поверхности полупроводника. В кремниевых р — n-переходах в оксиде кремния или на границе кремний — диоксид кремния почти всегда присутствует значительный положительный заряд, который может существенно уменьшить напряжение поверхностного пробоя в p+—n-переходах (если диффузия проводилась в исходный кристалл n-типа проводимости) или привести к образованию инверсионного канала и резкому увеличению обратного тока в n+ — p-переходах (если диффузия проводилась в исходный кристалл p-типа проводимости). Если в первом случае можно применять достаточно разработанные способы устранения поверхностного пробоя, то последнее обстоятельство сильно затрудняет создание высоковольтных p — n-переходов с малыми обратными токами. Поэтому для создания высоковольтных диодов лучше выбирать исходный кремний электронного типа проводимости.

РАССЧЕТНАЯ ЧАСТЬ

 

ЗАКЛЮЧЕНИЕ

 

В данном курсовом проекте был рассчитан выпрямительный диффузионный диод со следующими параметрами:

повторяющееся импульсное обратное напряжение: URRM = 2000 B,

максимально допустимый прямой ток: IFAV = 350 A,

обратный допустимый ток IRRM ≤ 70 мА,

прямое падение напряжения UFM ≤ 1,5 В,

концентрация легирующей примеси в исходном кристалле Nd = 5,68 × 1013,

удельное сопротивление исходного кристалла r = 70 Ом×см,

толщина структуры W = 270 мкм,

глубина залегания p - n-перехода xj = 55 мкм,

параметры диффузии Dt = 2,17 ×10-6 см-2,

диаметр выпрямительного элемента dВ = 24 мм,

угол обратной фаски j = 40°,

максимальная температура корпуса TC = 140°C.

Конструкция корпуса диода - таблеточная.

 


ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ

по проектированию и конструированию полупроводниковых приборов

 

1. Тема: Расчет выпрямительного диффузионного диода.

2. Срок представления курсового проекта к защите:

3. Исходные данные для проектирования:

3.1 Повторяющееся импульсное обратное напряжение: URRM = 2000 B.

3.2 Максимально допустимый прямой ток: IFAV = 350 A.

3.3 Обратный допустимый ток: IRRM ≤ 3 мА.

3.4 Прямое падение напряжения: UFM ≤ 1,5 В.

4. Содержание пояснительной записки курсового проекта.

4.1 Расчет удельного сопротивления исходного кристалла.

4.2 Расчет геометрических размеров слоев выпрямительного элемента.

4.3 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода.

4.4 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов.

5. Перечень графического материала.

5.1 Вольт амперная характеристика диода единичной площади.

5.2 Графики зависимости выделяемой и отводимой мощности от диаметра выпрямительного элемента.

5.3 Структура выпрямительного элемента.

 


РЕФЕРАТ

 

Пояснительная записка содержит 32 страницы печатного текста, 2 рисунка, 3 таблицы, 3 приложения, при написании использовалось 3 источника литературы.

выпрямительный элемент, экспоненциальная модель, диффузионный профиль, удельное сопротивление, напряжение пробоя, область пространственного заряда, прямой ток, диод.

Объектом разработки является выпрямительный диффузионный диод.

Цель работы - проектирование выпрямительного диффузионного диода.

Методы разработки - аналитический расчет.

Полученные результаты: по заданным электрическим параметрам определены технологические параметры изготовления выпрямительного элемента, разработана структура диода.

Основные конструкционные и эксплуатационные характеристики: Повторяющееся импульсное обратное напряжение URRM = 2000 B, максимально допустимый прямой ток IFAV = 350 A, обратный допустимый ток IRRM ≤ 70 мА, прямое падение напряжения UFM ≤ 1,5 В. Удельное сопротивление исходного кристалла r = 70 Ом×см, толщина структуры W = 270 мкм, глубина залегания p - n-перехода xj = 55 мкм, параметры диффузии Dt = 2,17 ×10-6 см-2, диаметр выпрямительного элемента dВ = 24 мм. Максимальная температура корпуса TC = 140°C.

Область применения:разработанный диод может применяться в любой силовой аппаратуре, где необходимо его использование и соблюдаются условия эксплуатации.

 


СОДЕРЖАНИЕ

 

Введение

1. Теоретическая часть

1.1 Выбор материала диода и типа проводимости исходного кристалла

1.2 Определение удельного сопротивления исходного кристалла

1.3 Расчет геометрических размеров слоев выпрямительного элемента

1.4 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода

1.5 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов

2. Расчетная часть

2.1 Расчет удельного сопротивления исходного кристалла

2.2 Расчет геометрических размеров слоев выпрямительного элемента

2.3 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода

2.4 Проверка соответствия расчетных и заданных значений основных параметров диода и корректировка расчетов

Заключение

Список использованных источников

Приложение А

Приложение Б

Приложение В

 


ВВЕДЕНИЕ

 

Целью данного курсового проекта является определение основных электрических, технологических и эксплуатационных параметров выпрямительного диффузионного диода на основании заданной структуры (характера распределения примеси) и электрических характеристик.

Проектирование полупроводниковых приборов является сложной задачей, требующей фундаментальных знаний в области физики полупроводников и полупроводниковых приборов, полупроводниковой технологии и т. д. Физические процессы в полупроводниковых приборах в большинстве случаев описываются системой нелинейных дифференциальных уравнений в частных производных, не имеющих аналитических решений. Точный расчет в них возможен лишь численными методами. На этапе обучения более целесообразно приобретение навыков проектирование на основе аналитических формул и выражений для закрепления навыков расчета полупроводниковых приборов.

Не смотря на то, что при расчете применялись аналитические формулы, которые применимы только в некотором приближении, все же благодаря приобретенным навыкам, для каждого конкретного случая были подобраны те соотношения, которые дают наименьшую погрешность расчета. Вследствие чего был разработан диод, который легко изготовить в стандартном технологическом цикле, причем все электрические и эксплуатационные характеристики будут соответствовать заданным.

Экономический расчет проекта не проводился.

Новизны в работе нет, так как проектирование проводилось по материалам научной литературы.


ТЕОРЕТИЧЕСКАЯ ЧАСТЬ



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 174; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.112.15 (0.008 с.)