Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода



 

Расчет диаметра выпрямительного элемента производится исходя из средней мощности прямых потерь в диоде и максимально возможной отводимой мощности, обеспечиваемой выбранной конструкцией корпуса диода.

При определении потерь мощности в прямом направлении обычно пользуются так называемой кусочно-линейной аппроксимацией прямой ВАХ диода [1]. В этом случае средняя мощность потерь при протекании предельного тока определяется выражением


, (1.4.1)

 

где прямое падение напряжения на диоде при протекании постоянного тока, равного .

При работе в стационарном режиме тепловая энергия, выделяемая в выпрямительном элементе, должна выводиться из внутренних областей диода наружу, к поверхности корпуса, а затем в окружающую среду. Способность к такому отводу тепла характеризуется внутренним тепловым сопротивлением прибора Rthjc. Эта величина определяется многими факторами, но в большей мере она обусловливается теплофизическими характеристиками материалов корпуса прибора, а не полупроводникового кристалла. Значения Rthjc для различных типов корпусов можно взять из [1].

Максимальная мощность, отводимая от выпрямительного элемента к внешним поверхностям полупроводникового прибора, находится из выражения

 

. (1.4.2)

 

Для силовых выпрямительных диодов значения Тjm и Тc устанавливаются в зависимости от величины повторяющегося импульсного обратного напряжения URRM (таблица 1.4.1).

 

Таблица - 4.1 Максимально допустимые температуры р — n-перехода и корпуса кремниевых силовых выпрямительных диодов

URRM, B Tjm, °C Tc, °C
До 1800    
1800 – 3000    
Свыше 3000    

 


Очевидно, что в стационарных режимах работы выпрямительных диодов максимально возможная отводимая мощность должна превышать выделяемую мощность в диоде. В этом случае температура р — n-перехода не превысит максимально допустимое значение Тjm. Поэтому критерием тепловой устойчивости и работоспособности прибора служит соотношение

. (1.4.3)

Для определения диаметра выпрямительного элемента по критерию (1.4.3) необходимо вычислить среднюю мощность прямых потерь в диоде

PВЫД = IFAV UF (2,5IFAV) (1.4.4) при различных диаметрах выпрямительного элемента [1]. Для этого поступают следующим образом. Задаются значением dВ рассчитывают активную площадь структуры, через которую протекает основной прямой ток. В случае планарной структуры активная площадь диода совпадает с площадью р — n-перехода. Для мезаструктуры с фаской ситуация несколько иная (рисунок 1.4.1).

 

1- омические контакты.

Рисунок 1.4.1 Структура выпрямительного элемента с фаской:

 

Так как выпрямительные диоды при предельном токе в большинстве случаев работают при высоком уровне инжекции в базах, область объемного заряда в таком режиме работы исчезает, и сопротивление диода определяется объемным сопротивлением кремниевой пластины. Основная часть тока в этом случае будет протекать в сечении, ограниченном верхним омическим контактом. Растекание тока в боковые области будет незначительным, особенно при малых углах фаски.


Поэтому за активную площадь структуры принимается площадь меньшего омического контакта [1]:

 

. (1.4.5)

 

Учитывая погрешности в расчете прямой ВАХ диода, более строго определять активную площадь не имеет смысла.

Рассчитав SАКТ, находят плотность тока через выпрямительный элемент при I = 2,5 IFAV:

 

. (1.4.6)

 

Затем по вольт амперной характеристике (ВАХ) диода единичной площади, определяют значение прямого падения напряжения.

При проектирования выпрямительных диодов ВАХ нужна в относительно узком диапазоне токов, близких к предельному току диода. Это позволяет использовать аналитические выражения, пригодные в ограниченном диапазоне токов и напряжений.

Одна из таких ВАХ в кремнии представлена ниже [1]:

 

, (1.4.7)

, (1.4.8)

 

где UF - падение напряжения в прямом направлении, В; jF — плотность прямого тока, А/см2; WSI — толщина выпрямительного элемента, мкм.

Выражение (1.4.7) записано для р+ — n — n+-структуры и предполагает, что выпрямительный элемент содержит сильнолегированный приконтактный слой n+-типа, который при низком уровне инжекции не оказывает влияния на ВАХ, если толщина умереннолегированной n-базы превышает (2 — З)Lp. Однако при высоком уровне инжекции на n — n+-переходе падает часть приложенного напряжения, какой бы ни была ширина базы.

Первое слагаемое в (1.4.7) выражает суммарное падение напряжения на р+_ n- и n+_ n-переходах структуры.

Второе слагаемое дает падение напряжения на n-базе в предположении, что имеет место обычная рекомбинация Шокли - Холла - Рида через глубокие центры, т. е. Оже-рекомбинация не существенна. Это допустимо для плотностей тока 300 — 400 А/см2. Чтобы падение напряжения на n-базе оставалось приемлемым, необходимо выбирать достаточно большое значение времени жизни. Критерием такого выбора может служить соотношение [1]

 

, (1.4.9)

 

где WSI дается в микрометрах, а τр — в микросекундах.

Третье слагаемое в (1.4.7) представляет вклад электронно-дырочного рассеяния.

После построения ВАХ, по полученному графику либо по (1.4.7) определяют значение прямого падения напряжения при I = 2,5 IFAV и выделяемую мощность потерь по (1.4.4).

После этого строят зависимость Рвыд от dВ. Затем, исходя из максимально допустимой температуры р — n-перехода и температуры корпуса (таблица 1.4.1), рассчитывают значения максимальной мощности, отводимой от выпрямительного элемента к внешним поверхностям полупроводникового прибора:


. (1.4.10)

 

Внутренние тепловые сопротивления Rthjc типовых корпусов полупроводниковых диодов определяются экспериментально и приводятся в таблицах [1]. Далее, исходя из критерия РВЫД < PОТВ и габаритных ограничений, выбирают тип корпуса, обеспечивающий необходимые условия теплоотвода, и диаметр выпрямительного элемента.

Корпуса силовых выпрямительных диодов в настоящее время унифицированы и выпускаются нескольких типов для разных значений диаметра выпрямительного элемента. Причем внутреннее тепловое сопротивление корпуса Rthjc зависит от dВ [1]. Для определения диаметра выпрямительного элемента в данном случае необходимо построить зависимости РОТВ от dВ для различных типов корпусов. Точка пересечения Рвьд и Ротв определяет искомый диаметр выпрямительного элемента, для обеспечения тепловой устойчивости диаметр следует выбирать несколько большим, чем дает точка пересечения. При этом нужно иметь в виду, что значения диаметра тоже стандартизированы, поэтому за dВ следует принимать первое разрешенное значение в сторону увеличения. Если окажется, что с учетом указанных критериев подходят несколько корпусов то можно выбрать вариант с меньшим диаметром выпрямительного элемента.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 155; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.193.45 (0.007 с.)