Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Технологическая схема установки термического обезвреживания твердых отходов.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Технологии термического обезвреживания отходов При сопоставлении различных технических и конструкторских решений на установках для сжигания отходов необходимо сравнивать как минимум сами печи и системы очистки продуктов сжигания, в первую очередь дымовых газов. Для МСЗ было предложено использовать несколько различных базовых конструкций и их модификаций, хорошо себя зарекомендовавших в отраслях промышленности. 3.1 Печь с неподвижной колосниковой решеткой Для сжигания твердых отходов используют печи и топки различных конструкций. На рисунке 2 представлена схема печи с неподвижной ступенчатой колосниковой решеткой. 1-бункер; 2-шахта; 3-сопло для подачи вторичного воздуха; 4-огнеупорная насадка; 5-первая ступень топки; 6-камера дожигания; 7-подача воздуха; 8-наклонная колосниковая решетка; 9-слой отходов
Отходы из бункера 1 через шахту 2 попадают на наклонную или ступенчатую колосниковую решетку 8. Слой отходов 9 под действием собственного веса медленно сползает по решетке к месту выгрузки золы. Органические составляющие отходов сгорают частично в слое, а частично над слоем 5, куда дополнительно подается вторичный воздух через сопло 3. Основное количество воздуха 7 поступает под решетку. Несгоревшие органические вещества вместе с дымовыми газами проходят огнеупорную насадку 4, предназначенную для турбулизации газового потока, и дожигаются в камере 6. Золу удаляют из печи вручную. Печи довольно чувствительны к сжиганию пластмасс и других плавких веществ, способных забивать решетки колосников, и требуют предварительного измельчения крупно- габаритных отходов. Используются для получения энергии. Печь с криволинейно-выпуклой колосниковой решеткой Печь содержит камеру сжигания 1(рис 3), колосниковую решетку 2 и расположенную над ней загрузочную шахту 3. Поверхность 4 центральной части решетки выполнена криволенейнно-выпуклой и сплошной и снабжена установленным с возможностью вращения и расположенным под загрузочной шахтой 3 распределителем 5 в виде конуса 6, на боковой поверхности которого закреплены лопасти 7 [2].
– камера сжигания; 2 – колосниковая решетка; 3 – загрузочная шахта; 4 – криволинейно – выпуклая поверхность решетки; 5 – распределитель; 6 – конус; 7 – лопасти; 8 – секции; 9 – горелка; 10 – сопла; 11 – патрубки для тангенциального подвода воздуха на горение; 12 – патрубок выхода дымовых газов; 13 – золовой затвор.
Поверхность 4 центральной части колосниковой решетки составляет 60 – 80 % от общей площади. Периферийная часть колосниковой решетки выполнена перфорированной и состоит из отдельных секций 8 с возможностью их поворота на 90o для ссыпания золы. Конус 6 может быть выполнен либо сплошным, либо полым с возможностью подвода охлаждающей среды. Угол при вершине конуса составляет менее 90o. Лопасти 7 выполнены в виде пластин и располагаются на боковой поверхности конуса от вершины к основанию либо по образующей, либо под углом к образующей. В конкретной печи пластины располагаются по эвольвенте. В камере сжигания 1 размещены горелка 9, сопла 10 для струйного дутья воздуха патрубки 11 для тангенциального подвода воздуха на горение, патрубок 12 выхода дымовых газов. В конусной части камеры сжигания размещен золовой затвор 13. Сжигание отходов в предлагаемой конструкции печи происходит следующим образом. Через загрузочную шахту 3 отходы загружают в камеру сжигания 1 таким образом, чтобы отходы заполнили загрузочную шахту 3. За счет сил сцепления между кусками отходы размещаются на поверхности 4 в виде столба, верхняя часть которого находится в загрузочной шахте. После окончания загрузки разжигают горелку 9, работающую на жидком топливе либо на газе. При достижении в камере сжигания температуры ~400oC отходы воспламеняются. После воспламенения отходов начинают вращать распределитель 5. При вращении последнего лопасти 7, захватывая отходы, перемещают их от центра к периферии, образуя спиралеобразную волну из отходов, которая перемещается за счет давления следующей волны. Этому движению способствует также криволинейный выпуклый под. Причем высота волны уменьшается по мере продвижения ее к периферии пода, поскольку объем волны, если не учитывать выгорание отходов остается постоянным, а периметр увеличивается. Все это обусловливает равномерное распределение отходов по всей поверхности пода печи, что способствует более полному выгоранию отходов, поскольку в центральной части пода, где высота и порозность слоя наибольшие, происходит пиролиз отходов и горение летучих. По мере выгорания летучих порозность слоя снижается и доступ кислорода для горения к поверхности отходов ухудшается, но благодаря продвижению волны слой отходов уменьшается, что способствует более полному их выгоранию. Переменный угол наклона пода способствует автоматическому отделению золы. Изменением скорости вращения распределителя можно регулировать в некоторых пределах высоту слоя отходов, а также скорость их передвижения по поверхности 4. Для более точной регулировки высоты слоя отходов и скорости их передвижения по поверхности 4 можно вращать центральную часть колосниковой решетки 2 Из загрузочной шахты 3 отходы под действием силы тяжести надвигаются на распределитель 5. В загрузочную шахту отходы могут подаваться либо порциями, либо непрерывно Вращение распределителя 5 обеспечивает непрерывную подачу отходов зону горения. Горение отходов можно условно разделить на стадию термического разложения отходов, характеризуемого выделением, и горением летучих веществ и стадию горения коксового остатка. Для проведения первой стадии нет необходимости в хорошем подводе окислителя в слой отходов, поскольку в слое происходит термолиз отходов, и необходим лишь подвод тепла в слой, горение летучих происходит над слоем. Поэтому под в этой части может быть выполнен сплошным, что снижает также физический недожог, поскольку отсутствует провал отдельных кусочков отходов сквозь щели колосника в зольник. Выполнение сплошного пода криволинейным связано с тем, что по мере выгорания отходов угол естественного откоса их увеличивается и увеличение угла наклона пода способствует их лучшему продвижению по поду. Для проведения второй стадии необходимо улучшить подвод окислителя в горящий слой, чему способствует колосниковая решетка, под которую можно подвести воздух. В зависимости от физико-химического состава отходов содержание летучих веществ в них колеблется от 55 до 85. %. Поскольку отходы сжигаются в смеси, то количество летучих в них в среднем равно 60 – 80. %.Так как центральная часть (сплошной под) предназначена для процесса выделения и горения летучих, а периферийная часть (колосники) – для горения коксового остатка, то соотношение их площадей, как показала практика должно быть пропорционально количеству летучих в отходах. окончательное дожигание отходов осуществляется на периферийной части перфорированной части решетки. Выполнение периферийной части решетки из отдельных секций с возможностью их поворота обеспечивает дожигание коксового остатка и удаление золы из камеры сжигания. Для интенсификации процесса часть воздуха на горение отходов подается в виде «острого» дутья через сопла 10. Другая часть воздуха по патрубкам 11 подается в тангенциальные сопла. Этот воздух закручивает газовый поток в печи, что способствует более полному сгоранию продуктов пиролиза в самой камере сжигания Выполнение центральной части колосниковой решетки в виде выпуклого криволинейного и сплошного пода и снабжение ее распределителем в виде конуса, на боковой поверхности которого закреплены лопасти, обеспечивает регулирование слоя отходов. Автоматическое регулирование слоя отходов по мере продвижения их от центра к периферии способствует улучшению условий сжигания за счет более свободного доступа воздуха к отходам, что приводит к увеличению полноты сгорания и повышению производительности печи, а также к снижению металлоемкости. 3.2 Барабанная вращающаяся печь Печь (рис 4) представляет собой стальной барабан, футерованный огнеупорными материалами. Барабанные печи устанавливают с небольшим наклоном в направлении движения отходов. Со стороны загрузки подлежащие сжиганию твердые отходы с помощью грейфера подают в печь через загрузочную воронку и лоток, а также воздух и топливо. Шлак и золу выгружают с противоположного конца печи. В первой части печи отходы подсушиваются (400°С), далее происходит их газификация и сжигание (900 – 1000°С). Возможно сжигание отходов и при более высоких температурах, однако это приведет к быстрому износу футеровки (достаточно тонкая).
1-корпус печи 2-загрузочное устройство 3-горелка 4-двухсекционная разгрузочная камера 5,6-золовая и газовая секции 7-газоход 8-мигалки для удаления золы Т-топливо В-воздух Обычно поверхность футеровки гладкая, сжигаемый материал скользит по ней, не переворачиваясь, поэтому для эффективного выгорания органических веществ требуется барабан значительной длины. Разделение газового и золового потоков осуществляется непосредственно в топочном устройстве. Узел выгрузки состоит из двух секций, что исключает захват золы, осаждающейся в золовой секции, газовым потоком при дополнительной очистке в газовой секции. Недостатком вращающихся барабанных печей являются низкая тепловая и массовая нагрузка топочного объема, высокие капитальные и эксплуатационные расходы. Необходимость, из – за достаточно тонкой футеровки, раз в полгода выполнять замену футеровки печи – операция трудоемкая, сложная и дорогая. 1.3 Печи для сжигания в кипящем слое Сжигание в кипящем слое осуществляют за счет создания двухфазной псевдогомогенной системы ''твердое - газ'' путем превращения слоя отходов в ''псевдожидкость'' под действием динамического напора входящего потока газа, достаточного для поддержания твердых частиц во взвешенном состоянии. Слой напоминает кипящую жидкость, и его поведение подчиняется законам гидростатики. Реактор с псевдожиженным слоем Реактор (рис 5) представляющий собой вертикальный стальной цилиндр, футерованный изнутри шамотным кирпичом или жаропрочным бетоном, состоит из цилиндрической топочной камеры и нижней конусной части с воздухораспределительной беспровальной решеткой. Вверху печь заканчивается куполообразным сводом. На решетку насыпается слой толщиной 0,8 – 1 м термически стойкого кварцевого песка фракцией 0.6 – 2.5 мм. 1 – воздух для псевдожижения; 2 – твердый продукт; 3 – слой инертного носителя (песок) в твердой фазе; 4 – граница псевдоожиженного слоя; 5 – корпус; 6 – унос золы; 7 – поток загружаемых отходов; 8 – загрузка отходов; 9 – отходящие газы; 10 – сепаратор; 11 – возврат пыли; 12 – решетка)
Кипящий слой в печи образуется при продувании воздуха через распределительную решетку со с скоростью, при которой частицы песка турбулентно перемещаются и как бы кипят в газовом потоке. Воздух нагнетается воздуходувкой в рекуператор, в котором подогревается отходящими из печи дымовыми газами до температуры 600 - 700°С, и затем поступает под распределительную решетку под давлением 12 – 15 кПа.
Первоначальная загрузка и последующее поддержание заданного уровня песка на решетке осуществляется через шлюз вверху реактора.
К основным достоинствам метода относят: интенсивное перемешивание твердой фазы, приводящее к полному выравниванию температур, концентраций и других параметров по объему псевдожиженного слоя; высокая удельная производительность слоя; отсутствие движущихся и вращающихся частей; сравнительно простое устройство реактора; обеспечивается наилучший режим теплопередачи. К наиболее существенным недостатком данного метода – это неравномерность времени пребывания в слое обрабатываемых частиц твердой фазы; возможность слипания и спекания твердых частиц; необходимость установки мощных пылеулавливающих устройств на выходе дымовых газов из слоя; необходимость во многих случаях подогрева ожижающего агента; ограниченность рабочих скоростей ожижающего агента. 3.4 Печь Ванюкова Для термической переработки твердых бытовых отходов (ТБО) при температуре 1350-1400°С были предложены металлургические печи Ванюкова (рис 6). -барботируемый слой шлака; 2-слой спокойного шлака; 3-слой металла; 4-огнеупорная подина; 5-сифон для выпуска шлака; 6-сифон для выпуска металла; 7-переток; 8-водоохлождаемые стены; 9-водоохлождаемый свод; 10-барботажные фурмы; 11-фурмы для дожигания 12-загрузочное устройство 13-крышка; 14-загрузочная воронка; 15-патрубок газоотвода. Сущность технологического процесса переработки ТБО в печи Ванюковка заключается в высокотемпературном разложении (плавке) компонентов рабочей массы в слое, находящегося в ванне печи, барботируемого шлакового расплава при температуре 1350 – 1400 °С и выдерживании их в течение 2-3 секунд. Сбрасываемые в ванну ТБО погружаются в интенсивно перемешиваемый вспененный расплав. При этом происходит полный разрыв связей в структурной цепочке сложных органических соединений, что предотвращает появление диоксинов и фуранов, имеющих техногенную природу образования. Барботаж расплава осуществляют с помощью кислородно-воздушного окислительного дутья, подаваемого через фурмы в нижней части боковых стенок печи, для дожигания дымовых газов предусмотрена подача дутья через ряд верхних фурм. Минеральная часть отходов растворяется в шлаке. Для получения шлака заданного состава в печь загружают флюс. Шлак, выпускаемый из печи в сифон, целесообразно подавать в жидком виде на переработку в строительные материалы. В результате плавки образуется: газы, содержащие продукты сгорания и разложения ТБО, и шлак, состоящий из силикатов и оксидов металлов. Возможно образование донной фазы, содержащей черные и цветные металлы. Процесс Ванюкова предлагается использовать не только для переработки ТБО, но и ряда промышленных отходов. Недостатком печи является потеря металлов в шлаке. Создание без инерционной системы автоматического регулирования процесса сложно, и соответственно, сложно поддержание заданной температуры без дополнительного расхода энергии, тепловой КПД низок. Запуск печи достаточно сложен и занимает 7 – 8 суток. 13. Схема вариантов повторной переработки и рекуперации отходов полимеров.
|
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 531; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.192.205 (0.009 с.) |