Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Экологические функции литосферы

Поиск

Современная экологическая геология развивается в основном с позиций биоцентризма, который предполагает всесторонний учет всех видов человеческого воздействия на геологическую среду и ее обратного влияния на биоту. При этом во внимание в первую очередь принимается не экономическая целесообразность того или иного инженерного сооружения и его значимость для человека, а то, каким образом это сооружение "вписано" в природную обстановку, как оно влияет на геологическую среду, экосистемы и биоту в целом. Изучением этого сложного взаимодействия общества и геологической компоненты окружающей среды и занимается экологическая геология. Во всем мире затраты на восстановление естественного равновесия

в литосфере очень высоки. Они отражают "плату человека" за вмешательство в природную среду. Причем стоимость этих расходов практически во всех странах из года в год увеличивается. В США ассигнования на природоохранные мероприятия в 1990 финансовом году составили 12,7 млрд. долларов. В России на эти цели выделяется ассигнований почти в 10 раз меньше.

Экологическая геология изучает верхние горизонты литосферы как абиотическую компоненту природных и антропогенно измененных экосистем высокого уровня организации. Ее объектом исследований являются биотопы экосистем, а предметом исследований - экологическая роль и экологические функции литосферы, основными среди которых являются ресурсная, геодинамическая и геохимическая. Все эти функции литосферы теснейшим образом связаны между собой.

Ресурсная функция верхних горизонтов литосферы заключается в ее потенциальной способности обеспечения потребностей биоты (экосистем) абиотическими ресурсами, в том числе и потребностей человека теми или иными полезными ископаемыми, необходимыми для существования и развития человеческой цивилизации. Причем с позиций биоцентризма потребности человека не должны вступать в противоречие с потребностями биоты в целом. Среди природных ресурсов на Земле по их значимости для развитых государств на первом месте стоят энергоресурсы. При современном уровне развития промышленности в мире технологическая энергетика создает и трансформирует огромное, если рассматривать планету в целом, количество энергии. Около 70% добываемых полезных ископаемых в мире составляют энергоресурсы. Следовательно, можно говорить о соизмеримости техногенного энергетического потенциала с энергетическим потенциалом Земли естественного происхождения, особенно на урбанизированных территориях.

Потребности в энергоресурсах развитых стран все более и более возрастают. На фоне нехватки собственных природных ресурсов они

стремятся захватить мировые рынки сбыта полезных ископаемых, прежде всего нефти, угля, металлических и полиметаллических руд и т.д., объявляя их зоной национальных экономических интересов. Малейшие "сбои" в этих зонах приводят к тяжелейшим, прежде всего энергетическим и экономическим, кризисам в этих странах. В конечном итоге такой путь развития губителен для людей: все большее число стран, переходя в стадию экономически высокоразвитых государств, с одной стороны, будет вынуждено вступать в конфликты из-за ресурсов, а с другой - все более интенсивно эксплуатировать ресурсы слаборазвитых стран. В настоящее время в мире отмечается ресурсная напряженность, которая обусловливает необходимость перехода человечества к системному ресурсному мышлению. Этот переход, видимо, совершится в ближайшие годы, поскольку человечество для этого имеет, по оценкам экспертов, всего 3-4 десятилетия. Выработка соответствующей теоретической базы, касающейся ресурсов литосферы, - важнейшая проблема экологической геологии.

Геодинамическая функция литосферы в экологическом аспекте проявляется в ходе различных геологических процессов (экзогенных -оползней, обвалов, селей, береговой абразии, подтопления и т.д. и эндогенных - землетрясений, вулканических извержений и т.д.), так или иначе влияющих на различные экосистемы, в том числе и человеческое общество. Эти процессы, как указывалось выше, делятся на природные геологические и процессы, вызванные человеком, техногенные - инженерно-геологические. Важно подчеркнуть, что последние могут по своей интенсивности, мощности и масштабам проявления существенно превосходить их природные аналоги, поэтому их прогнозу, оценке и инженерной защите территорий с развитыми на них экосистемами от негативного влияния инженерно-геологических процессов в экологической геологии уделяется первостепенное внимание.

Пока нерешенных проблем в этой области очень много и среди них одна из центральных - выявление предельно допустимых уровней техногенных воздействий на геологическую среду и ее отдельные компоненты - почвы, горные породы, подземные воды, рельеф территории и развитые на ней геологические процессы, изменение которых влияет на различные экосистемы. Основная задача заключается в том, чтобы научиться правильно прогнозировать экологические последствия тех или иных техногенных воздействий на литосферу, а следовательно, научиться предотвращать негативные экологические процессы и тем самым влиять на разразившийся глобальный экологический кризис. Немалую роль в решении этой проблемы должен сыграть экологический мониторинг геологической среды - система постоянных наблюдений, контроля, оценки, прогноза и управления состоянием геологической среды с целью обеспечения ее экологических функций.

Геохимическая функция литосферы в экологическом аспекте заключается в ее активном участии в процессах круговорота веществ в природе. Причем одинаково важен анализ обеих сторон круговорота - как вредных, так и полезных для экосистем веществ. Геохимическая транспортировка различных элементов в пределах литосферы и экосистем могут осуществляться различными путями. В связи с чем выделяют механическую, физико-химическую, биогенную и техногенную миграцию, которая является предметом исследований экологической геохимии. Техногенная миграция веществ, как и общие закономерности техногенеза, еще далеко не установлены, однако в этой области уже открыт целый ряд важнейших законов, позволяющих охарактеризовать геохимическую функцию литосферы.

Разработка методов управления состоянием и свойствами массивов горных пород верхних горизонтов литосферы с целью сохранения и обеспечения их экологических функций - практическое направление экологической геологии, которое интенсивно развивается в настоящее время. Задача управления успешно решается методами технической мелиорации горных пород, в арсенале которой имеются всевозможные способы целенаправленного

активного влияния человека на состав, строение, состояние и свойства горных пород и их массивов. Применение этих методов позволяет менять состояние и свойства массивов горных пород в нужном направлении, получать массивы с заданными свойствами, осуществлять реабилитацию (очистку) территорий, почв, горных пород от всевозможных техногенных загрязнений и т.д. Разработка этих актуальных проблем позволит существенно продвинуть вперед решение многих задач геоэкологии и экологии и вплотную подойти к реализации идеи В.И. Вернадского о ноосфере - высшей фазе эволюции биосферы на Земле.

Гидросфера

Водная оболочка Земли представлена на нашей планете Миро­вым океаном, пресными водами рек и озер, ледниковыми и под­земными водами. Общие запасы воды на Земле составляют 1,5 млрд. км3. Из этого количества 97% приходится на соленую морскую воду, 2% составляет замерзшая вода ледников и 1% — пресная вода.

Гидросфера — это сплошная оболочка Земли, так как моря и океаны переходят в подземные воды на суше, а между сушей и мо­рем идет постоянный круговорот воды, ежегодный объем которого оценивается в 100 тыс. км3. Большая часть воды, испаренной с по­верхности морей и океанов, выпадает в виде осадков над ними же,

около 10% — уносится на сушу, падает на нее, а затем или реками уносится в океан, или уходит под землю, или консервируется и ледниках. Круговорот воды в природе не является абсолютно замкнутым циклом. Сегодня доказано, что наша планета постоянно те­ряет часть воды и воздуха, которые уходят в мировое пространство. Поэтому с течением времени встанет проблема сохранения воды ну нашей планете..

Вода — вещество, обладающее многими уникальными физиче­скими и химическими свойствами. В частности, вода имеет высо­кую теплоемкость, теплоту плавления и испарения и в силу этих ка­честв является важнейшим климатообразующим фактором на Земле Вода — хороший растворитель, поэтому в ней содержится множест­во химических элементов и соединений, необходимых для поддержания жизни. Не случайно именно Мировой океан стал колыбелью Жизни на нашей планете.

Мировой океан. Большую часть поверхности Земли занимает Мировой океан (71% поверхности планеты). Он окружает материки (Евразию, Африку, Северную и Южную Америку, Австралию и Ан­тарктиду) и острова. Океан делится материками на четыре части Тихий (50% площади Мирового океана), Атлантический (25), Индийский (21) и Северный Ледовитый (4%) океаны. Мировой океан часто называют «печкой планеты». В теплое время года вода согревается медленнее суши, поэтому она охлаждает воздух, зимой же, наоборот, теплая вода согревает холодный воздух.

В Мировом океане постоянно происходят поступательные движения масс воды — морские течения. Они образуются под влиянием господствующих ветров, приливных сил Луны и Солнца, а также из-за существования слоев воды разной плотности. Под влиянием вращения Земли все течения в Северном полушарии отклоняются вправо, а в Южном полушарии — влево. Огромную роль в морях и океанах играют приливы и отливы, вызывающие периодические ко­лебания уровня воды и смену приливных течений. В открытом океане высота прилива достигает одного метра, у берегов — до 18 метров. Самые высокие приливы наблюдаются у берегов Франции (14,7 м) и в Англии, в устье реки Северн (16,3 м), в России — в Мензенском заливе Белого моря (10 м) и в Пенжинской губе Охотского моря (11 м).

Огромны продовольственные, энергетические и минеральные запасы Мирового океана.

Реки. Важной частью гидросферы Земли являются реки — водные потоки, текущие в естественных руслах и питающиеся за счетповерхностного и подземного стока с их бассейнов. Реки с притоками образуют речную систему. Течение и расход воды в них зависят от уклона русла. Обычно выделяют горные реки с быстрым течением и узкими речными долинами и равнинные реки с медлен­ным течением и широкими речными долинами.

Реки являются важной частью круговорота воды в природе. Их суммарный годовой сток в Мировой океан составляет 38,8 тыс. км3. Реки — это источники питьевой и промышленной воды, источник гидроэнергии. В реках обитает большое количество растений, рыб и других пресноводных организмов. Самые большие реки на планете — Амазонка, Миссисипи, Енисей, Лена, Обь, Нил, Амур, Янцзы, Волга.

Озера и болота — также часть гидросферы Земли. Озера — это заполненные водой водоемы, вся поверхность которых открыта ат­мосфере и которые не имеют уклонов, создающих течения, а также не связаны с морем иначе, чем через реки и протоки. Понятие «озера» включает в себя большой круг водоемов, в том числе пруды (небольшие мелкие озера), водохранилища, а также болота и тряси­ны со стоячей водой. По происхождению озера могут быть ледни­ковыми, проточными, термокарстовыми, солеными. С геологиче­ской точки зрения озера имеют малую продолжительность жизни. Как правило, они постепенно исчезают из-за нарушения равнове­сия между притоком и стоком воды из озера. К числу крупнейших озер относятся: Каспийское и Аральское моря, Байкал, озера Верхнее, Гурон и Мичиган в США и Канаде, Виктория, Ньянза и Танганьика в Африке.

Подземные воды — еще одна часть гидросферы. Подземными являются все воды, находящиеся под земной поверхностью. Суще­ствуют подземные реки, свободно текущие по подземным каналам — трещинам и пещерам. Есть также фильтрующиеся воды, просачи­вающиеся через рыхлые породы (песок, гравий, гальку). Самый ближний к поверхности земли горизонт подземных вод называют грунтовыми водами.

Вода, попавшая в грунт, доходит до водоупорного слоя, накап­ливается на нем и пропитывает вышележащие породы. Так образу­ются водоносные горизонты, могущие служить источниками воды. Иногда водоупорный слой может создавать вечная мерзлота.

Ледники, образующую ледяную оболочку Земли (криосферу), также являются частью гидросферы нашей планеты. Они занимают площадь, равную 16 млн. км2, что примерно составляет 1/10 часть поверхности планеты. Именно в них содержатся основные запасы пресной воды (3/4). Если бы льды, находящиеся в ледниках, вдруг растаяли, уровень Мирового океана повысился бы на 50 метров.

Ледяные массивы образуются там, где возможно не только на­копление снега, выпавшего за зиму, но и сохранение его в течение лета. Со временем такой снег уплотняется до состояния льда и мо­жет закрыть собой всю местность как ледниковый покров или ле­дяная шапка. Места, где может происходить накопление многолетнего льда, определяются географической широтой и высотой над уровнем моря. В полярных районах граница многолетнего льда лежит на уровне моря, в Норвегии — на высоте 1,2—1,5 км над уровнем моря, в Альпах — на высоте 2,7 км, а в Африке — на высоте 4,9 км. Гляциологи различают материковые покровы, или щиты, и гор­ные ледники. Самые мощные материковые ледниковые покровы расположены в Антарктиде и Гренландии. В некоторых местах толщина льда достигает 3,2 км. Постепенно сползающие к океану толщи льда рождают ледяные горы — айсберги. Горные ледники — это ледяные реки, спускающиеся по склонам гор, хотя их движение идет очень медленно — со скоростью от 3 до 300 м в год. При сво­ем движении ледники меняют картину ландшафта, увлекая за собой валуны, обдирая склоны гор и обламывая при этом значительные куски породы. Продукты разрушения уносятся ледником по склону и оседают по мере его таяния.

Вечная мерзлота. Частью криосферы Земли помимо ледников являются многолетнемерзлые фунты (вечная мерзлота). Толщина таких фунтов в среднем достигает 50—100 м, а в Антарктиде доходит до 4 км. Вечная мерзлота занимает огромные территории в Азии, Европе, Северной Америке и Антарктиде, ее общая площадь состав­ляет 35 млн. км2. Вечная мерзлота возникает в местах, где среднего­довые температуры имеют отрицательные значения. В ней содер­жится до 2% общего объема льда на Земле.

Атмосфера

 

Атмосфера — это воздушная оболочка Земли, окружающая ее и вращающаяся вместе с ней. По химическому составу атмосфера представляет собой смесь газов, состоящую из 78% азота, 21% ки­слорода, а также инертных газов, водорода, углекислого газа, паров воды, на которые приходится около 1% объема. Кроме того, воздух содержит большое количество пыли и различных примесей, порож­даемых геохимическими и биологическими процессами на поверхности Земли.

Масса атмосферы довольно велика и составляет 5,15 • 1018ю Это значит, что каждый кубический метр окружающего нас воздуха весит около I кг. Вес воздуха, давящего на нас, называют атмосферным давлением. Среднее атмосферное давление на поверхности Земли равно 1 атм, или 760 мм ртутного столба. Это означает, что на каждый квадратный сантиметр нашего тела давит груз атмосферы массой в 1 кг. С высотой плотность и давление атмосферы быстро убывают.

В атмосфере есть районы с устойчивыми минимумами и максимумами температур и давлений. Так, в районе Исландии и Алеутских островов располагается такая область, являющаяся традиционным местом рождения циклонов, определяющих погоду в Евро-. А в Восточной Сибири область низкого давления летом сменяет­ся областью высокого давления зимой. Неоднородность атмосферы вызывает перемещение воздушных масс — так появляются ветры.

Атмосфера Земли имеет слоистое строение, причем слои отли­чаются по физическим и химическим свойствам. Важнейшими из них являются температура и давление, изменение которых лежит в основе выделения атмосферных слоев. Таким образом, в атмосфере Земли выделяют: тропосферу, стратосферу, ионосферу, мезосферу, термосферу и экзосферу.

Тропосфера — это нижний слой атмосферы, определяющий по­году на нашей планете. Его толщина — 10—18 км. С высотой пада­ет давление и температура, опускаясь до —55°С. В тропосфере со­держится основное количество водяных паров, образуются облака и формируются все виды осадков.

Следующий слой атмосферы — это стратосфера, простирающая­ся до 50 км в высоту. Нижняя часть стратосферы имеет постоянную температуру, в верхней части наблюдается повышение температуры из-за поглощения солнечного излучения озоном.

Ионосфера — эта часть атмосферы, которая начинается с высо­ты 50 км. Ионосфера состоит из ионов — электрически заряженных частиц воздуха. Ионизация воздуха происходит под действием Солнца. Ионосфера обладает повышенной электропроводностью и в силу этого отражает короткие радиоволны, позволяя осуществлять дальнюю связь.

С высоты в 80 км начинается мезосфера, роль которой состоит в поглощении озоном, водяным паром и углекислым газом ультра­фиолетовой радиации Солнца.

На высоте 90 — 200—400 км находится термосфера. В ней про­исходят основные процессы поглощения и преобразования солнеч­ного ультрафиолетового и рентгеновского излучений. На высоте более 250 км постоянно дуют ураганные ветры, причиной которых считают космические излучения.

Верхняя область атмосферы, простирающаяся от 450—800 км до 2000—3000 км, называется экзосферой. В ней содержится атомар­ный кислород, гелий и водород. Часть этих частиц постоянно ухо­дит в мировое пространство.

Результатом саморегулирующихся процессов в атмосфере Земли является климат нашей планеты. Это не то же самое, что погода, которая может меняться каждый день. Погода очень изменчива и зависит от колебаний тех взаимосвязанных процессов, в результате которых она формируется. Это — температура, ветры, давление, осадки. Погода в основном является результатом взаимодействия атмосферы с сушей и океаном.

Климат — это состояние погоды какого-либо региона за длительный промежуток времени. Он формируется в зависимости от географической широты, высоты над уровнем моря, воздушных по­токов. Меньше влияют рельеф и тип почвы. Выделяют ряд климатических зон мира, обладающих комплексом сходных характеристик, отно­сящихся к сезонным температурам, количеству осадков и силе ветра:

зона влажного тропического климата — среднегодовые температуры больше 18°С, холодов не бывает, осадков выпадаем больше, чем испаряется воды;

зона сухого климата — область малого количества осадков сухой климат может быть жарким, как в тропиках, или све­жим, как в континентальной Азии;

зона теплого климата — средние температуры в самое холод­ное время здесь не опускаются ниже -3°С, и хотя бы один месяц имеет среднюю температуру больше 10°С. Хорошо вы­ражен переход от зимы к лету;

зона холодного северного таежного климата — в холодное вре­мя средняя температура опускается ниже —З'С, но в теплое время она выше 10°С;

зона полярного климата — даже в самые теплые месяцы сред­ние температуры здесь ниже 10°С, поэтому в этих районах прохладное лето и очень холодные зимы;

зона горного климата — районы, отличающиеся по климатическим характеристикам от той климатической зоны, в которой они находятся. Появление таких зон связано с тем, что с вы­сотой падают средние температуры и сильно меняется количе­ство осадков.

Климат Земли имеет ярко выраженную цикличность. Самым из­вестным примером цикличности климата являются периодически случавшиеся на Земле оледенения. За два последних миллиона лет наша планета пережила от 15 до 22 ледниковых периодов. Об этом свидетельствуют исследования осадочных пород, накопившихся на дне океанов и озер, а также исследования образцов льда из глубин Антарктического и Гренландского ледниковых покровов. Так, в по­следний ледниковый период Канада и Скандинавия были покрыты гигантским ледником, а Северо-Шотландское нагорье, горы Север­ного Уэльса и Альпы имели огромные ледяные шапки.

Сейчас мы живем в период глобального потепления. С I860 г. средняя температура Земли поднялась на 0,5°С. В наши дни увели­чение средних температур идет еще более быстрыми темпами. Это грозит серьезнейшими изменениями климата на всей планете и другими последствиями, которые более подробно будут рассмотре­ны в главе, посвященной проблемам экологии.

Магнитосфера

Магнитосфера — самая внешняя и протяженная оболочка Зем­ли — представляет собой область околоземного пространства, фи­зические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц космическо­го происхождения. С дневной стороны она простирается на 8—24 земных радиусов, с ночной — доходит до нескольких сотен радиу­сов и образует магнитный хвост Земли. В магнитосфере находятся радиационные пояса.

Магнитное поле Земли образуется во внешней оболочке ядра благодаря циркуляции электрических токов. Поэтому Земля пред­ставляет собой огромный магнит с четко выраженными магнитны­ми полюсами. Северный магнитный полюс находится в Северной Америке на полуострове Ботия, Южный магнитный полюс — в Ан­тарктиде на станции Восток.

В настоящее время установлено, что магнитное поле Земли не является неизменным. Его полярность в истории существования Зем­ли менялась несколько раз. Так, 30 000 лет назад Северный магнит­ный полюс находился на Южном полюсе. Кроме того, периодиче­ски происходят возмущения магнитного поля Земли — магнитные бури, главной причиной возникновения которых является колеба­ние солнечной активности. Поэтому особенно часты магнитные бури в годы активного Солнца, когда на нем появляется много пя­тен, а на Земле возникают полярные сияния.

Геодинамические процессы

 

Облик нашей планеты не является чем-то застывшим, раз и навсе­гда сформировавшимся. Благодаря разнообразным геодинамическим процессам на планете постоянно происходит видоизменение земной коры и ее поверхности. Эти процессы в геологии делят на две боль­шие группы — эндогенные (внутренние) и экзогенные (внешние).

Эндогенные процессы

Геодинамические процессы, вызванные внутренними силами Зем­ли и протекающие в ее недрах, называются эндогенными.

Они обусловлены энергией и действием сил тяжести, возни­кающих при вращении Земли, а проявляются в виде тектонических движений (поднятие и опускание земной коры, землетрясения, об­разование крупных элементов рельефа и т.п.), процессов магматиз

ма (вулканизма), метаморфизма горных пород и формирования ме сторождений полезных ископаемых.

Движение тектонических плит — это грандиозный геологическии процесс, ведущий к деформации верхних частей земной коры, но протекающий очень медленно. Поэтому в течение исторического времени движение континентов можно зафиксировать только с по мощью особо точных измерений. Кроме того, движение плит вызывает эффекты, проявляющиеся в форме бедствий и катастроф.

Линии, по которым стыкуются плиты, — это эквивалент трещин в земной коре. Они называются «сдвигами» и представляю! собой слабые места, через которые тепло и расплавленный камень находящийся под корой, могут выйти наверх. Такое тепло способно согревать фунтовые воды, образовывать выходы пара и горячие источники. Иногда вода может нагреваться до тех пор, пока давление не достигает критической точки, после чего она вырывается на поверхность высоко в воздух. Так образуются гейзеры.

Вулканическая деятельность. В некоторых районах вверх по трещинам поднимается и застывает расплавленный камень. Новый расплавленный камень вскипает сквозь возвышенность отвердевшего камня и увеличивает ее высоту. Так образуется гора с центральным проходом, по которому расплавленная каменистая масса, или лава, может подниматься и оседать. Также она может затвердевать на более или менее длительный период, а затем плавиться снова. Этот процесс получил название магматизма.. Магматизм — проявление глубинной активности Земли, он тесно связан с ее тепловыми процессами и тектонической эволюцией. В результате магматизма формируются горные породы внутри земли или вулканы, т.е происходят излияния расплавленной магмы из глубин Земли на ее поверхность.

По степени активности вулканы могут быть действующими или недействующими. Если вулкан демонстрирует определенную актив­ность в течение длительных периодов времени, он не очень опасен, хотя периодические извержения, в ходе которых потоки лавы изливаются наружу, вынуждают эвакуировать находящиеся поблизости населенные пункты.

Намного опаснее вулканы, длительное время пребывающие в не активном состоянии. У таких вулканов центральный проход, по ко­торому лава поднималась раньше, обычно затвердевает, и потому новые потоки лавы, поднимающиеся из глубин в период усиления активности, не находят себе прохода. Нарастающее давление приводит к тому, что верхушка вулкана прорывается. При этом происходит резкий, неожиданный выброс газа, пара, твердых камней и раскаленной лавы. Если до этого вулкан долгое время оставался неактив­ным и возле него возникли людские поселения, то последствия из извержения могут быть катастрофическими. В результате извержения Везувия в 79 г. н.э. были полностью уничтожены города Помпеи и Геркуланум, располагавшиеся на его южном склоне.

Самое крупное вулканическое извержение произошло на острове Кракатау 27 августа 1883 г., в результате которого остров был практически полностью разрушен. В воздух оказалось выброшено коло 21 км3 вулканического вещества. Пепел выпал на площади 100 тыс. км2 и затемнил окружающий район на два с половиной дня. Пыль достигла стратосферы и распространилась по всей Земле, вызывая эффектные закаты на протяжении почти двух лет. Звук взрыва был слышен на расстоянии 1/13 земного шара, а сила извержения в 26 раз превосходила мощность самой современной водородной бомбы. Кроме того, взрыв вызвал волну цунами, которая постигла высоты 36 метров и уничтожила 163 деревни и унесла жизни почти 40 тысяч человек.

Землетрясения. Еще более губительным следствием движения {тектонических плит являются землетрясения.

Землетрясениями называют подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся;на большие расстояния в виде упругих колебаний.

Их сложно предсказать, так как они зарождаются по разным причинам и на разной глубине. Небольшие тектонические поднятия и опускания образуются в результате процессов, происходящих Внутри земной коры на глубине 10—20 км, а самые глубокие очаги землетрясений локализованы на глубине 700 км. В основном землетрясения происходят на границах соединения тектонических плит, [которые могут подниматься или опускаться друг относительно дру­га, а также двигаться в разных направлениях.

Само землетрясение продолжается лишь несколько минут и со­стоит из нескольких толчков. Но за это время оно может нанести огромный ущерб обширному району. Сила землетрясений характе­ризуется по специальной 12-балльной шкале, предложенной в 1935 г. американским сейсмологом Ч. Рихтером и носящей его имя. Каждая последующая цифра этой шкалы соответствует десятикратному

сличению количества энергии, высвобождаемой при землетрясе­нии. Так, разрушение зданий начинается при 5 баллах. Землетрясе­ние в 7 баллов считается сильным, а в 8 баллов и выше — катаст­рофическим.

В историческом масштабе самое сильное землетрясение про­изошло в Китае в 1556 г., когда одновременно погибло 830 тыс. че­ловек. В Западной Европе очень крупным было землетрясение 1755 г. в Португалии. При этом полностью была разрушена столица Португалии город Лиссабон, погибло 60 тыс. человек. Часто случаются землетрясения в Сан-Франциско, который стоит на тектоническом разломе. На территории бывшего СССР также достаточно много сейсмически опасных зон. В 1988 г. произошло землетрясение в Армении, при котором погибло свыше 20 тыс. человек и более 500 тыс. остались без крова. А в 1995 г. сильнейшее землетрясение полностью разрушило город Нефтегорск на Сахалине.

Экзогенные процессы

К экзогенным относятся геодинамические процессы, которые происходят на поверхности Земли или на небольшой глубине в земной коре и обусловлены энергией солнечного излучения, грави­тационной силой и жизнедеятельностью организмов.

Экзогенными являются следующие процессы: выветривание, за­болачивание, оползни, лавины, обвалы, криогенные процессы, дея­тельность водных потоков, морей, озер и ледников. Внешние экзо­генные процессы происходят на поверхности Земли при давлениях и температурах, близких к нормальным, поэтому они доступнее для изучения, чем эндогенные процессы.

Выветривание. Основу всех экзогенных процессов составляет выветривание — процесс механического разрушения и химического изменения горных пород и минералов в условиях земной поверхно­сти, происходящий под влиянием различных атмосферных явлений, фунтовых и поверхностных вод, жизнедеятельности растительных и животных организмов и продуктов их разложения. Выветривание имеет большое значение, поскольку с ним тесно связан процесс почвообразования, т.е. зарождение и формирование почвы.

Флювиальные процессы. Преобразованию земной поверхности в огромной мере способствуют также флювиальные процессы — со­вокупность процессов, осуществляемых текучими поверхностными водными потоками. Результатом флювиальных процессов является размыв водными потоками земной поверхности в одних местах и одновременный перенос и отложение продуктов размыва в других Флювиальные процессы развиваются в пределах речных бассейнов, в которые входят речные, овражно-балочные и склоновые системы. Главным элементом этих процессов являются реки — водные пото­ки, текущие в естественных условиях и питающиеся за счет поверх­ностного и подземного стока со своих бассейнов.

Гляциальные процессы. К экзогенным относятся также и гляциальные процессы, связанные с деятельностью льда, т.е. современ­ным и прошлым оледенением территории. Такие процессы происходят в условиях длительного существования большого количества льда в пределах участка земной поверхности, в первую очередь в виде ледников — движущихся скоплений льда. Эрозионная дея­тельность ледников сводится к выпахиванию коренного ложа ледника обломками горных пород, к формированию специфических
отложений в виде скопления несортированных обломков горных пород, переносимых или отложенных ледниками образований. В результате таяния ледников образуются мощные водные потоки, которые формируют флювиогляциальные отложения и рельеф.

Гравитационные процессы. Наконец, в пределах Мирового океана распространены гравитационные процессы, в возникновении развитии которых основная роль принадлежит силе тяжести. В настоящее время среди гравитационных процессов дна Мирового океана ученые особо выделяют процесс медленного сползания или оплывания толщ осадков на относительно пологих склонах, подводные оползни, донные и постоянные поверхностные течения и т.д.



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 611; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.178.162 (0.015 с.)