Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Выпуклость функции и точки перегиба

Поиск

Непрерывная на отрезке [ a; b ] функция f (x) называется выпуклой вверх на этом отрезке, если для любых точек x 1 и x 2 из этого отрезка

График 3.2.3.1. Выпуклая вверх функция

Другими словами, если для любых точек x 1 и x 2 отрезка [ a; b ] секущая AB проходит под графиком функции f (x), то функция f выпукла вверх.

Аналогично определяется функция, выпуклая вниз.

Дважды дифференцируемая на [ a; b ] функция f (x) выпукла вверх, если для любого

Дважды дифференцируемая на [ a; b ] функция f (x) выпукла вниз, если для любого

Так, вторая производная функции равна откуда следует, что квадратичная функция выпукла вниз на всей области определения.

Пусть функция f (x) непрерывна в точке и имеет в этой точке конечную или бесконечную производную. Тогда точка называется точкой перегиба функции f, если в этой точке изменяется направление ее выпуклости.

Необходимое условие наличия точки перегиба. Если – точка перегиба функции f (x), и функция f (x) имеет вторую производную, непрерывную в этой точке, то

Достаточные условия наличия точки перегиба.

Пусть функция f (x) непрерывна и имеет конечную или бесконечную производную в точке Если меняет знак при переходе через точку то – точка перегиба функции f (x).

Если то – точка перегиба функции f (x).

 

В заключение приведем примеры, когда точка x 0 не является точкой перегиба несмотря на то, что ее вторая производная меняет знак при переходе через эту точку:

  • если функция разрывна в точке (например );
  • в случае угловой точки (например,

Не являются точками перегиба и точки возврата, например точка у функции

Все вышеперечисленные случаи изображены на рисунке.

График 3.2.3.2.Точки, не являющиеся точками перегиба: точка разрыва, точка возврата, угловая точка

Асимптоты графика функции

Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.

Определение 7.1 Вертикальной асимптотой графика функции называется вертикальная прямая , если или при каком-либо из условий: , , . Заметим, что мы при этом не требуем, чтобы точка принадлежала области определения функции , однако она должна быть определена по крайней мере в какой-либо из односторонних окрестностей этой точки: или , где .

Пример 7.1 Рассмотрим функцию . График имеет вертикальную асимптоту , поскольку при выполняется условие , а также при выполняется условие .

 

Рис.7.1.Вертикальная асимптота функции

 


Пример 7.2 Рассмотрим функцию . Её график имеет вертикальную асимптоту , так как при . То, что при функция не стремится к бесконечности, для наличия асимптоты неважно: для того, чтобы прямая являлась вертикальной асимптотой, достаточно, чтобы график приближался к ней хотя бы с одной стороны. (К слову сказать, при .)

 

Рис.7.2.Вертикальная асимптота функции

 


Пример 7.3 Рассмотрим функцию . Прямая является вертикальной асимптотой графика , так как при . Заметим, что слева от точки функция вообще не определена.

 

Рис.7.3.Вертикальная асимптота функции

 


Итак, для нахождения вертикальных асимптот графика данной функции нужно исследовать точки разрыва функции и точки, лежащие на границах области определения функции, и выяснить, при приближении аргумента к каким из этих точек значения функции стремятся к бесконечности.

Наклонной асимптотой графика функции при называется прямая , если выполнены два условия:
1) некоторый луч целиком содержится в ;
2) расстояние по вертикали между графиком и прямой стремится к 0 при :

(7.1)


Наклонной асимптотой графика функции при называется прямая , если
1) некоторый луч целиком содержится в ;
2) расстояние по вертикали между графиком и прямой стремится к 0 при :

Рис.7.6.Графики функций, имеющие наклонные асимптоты при и при

 


В случае, если наклонная асимптота расположена горизонтально, то есть при , она называется горизонтальной асимптотой. Таким образом, горизонтальная асимптота -- частный случай наклонной асимптоты; прямая является горизонтальной асимптотой графика при или , если

или

соответственно.

Пример 7.6 Рассмотрим функцию . График этой функции имеет наклонную асимптоту при . Действительно,

при

Однако эта функция не определена ни на каком луче вида , так что её график не может иметь асимптоты при .

 

Рис.7.7.Наклонная асимптота функции

 


Пример 7.7 График функции имеет горизонтальную асимптоту как при , так и при , поскольку, очевидно, при . Можно сказать также, что асимптота при у этого графика совпадает с асимптотой при .


Аналогично определению наклонной асимптоты можно дать также более общее определение:

Определение 7.3 Линия называется асимптотической линией графика функции при (или при ), если обе эти функции определены на некотором луче (или луче ) и разность ординат графиков стремится к 0 при (или при , соответственно).

Если функция -- линейная, то есть график -- наклонная прямая, то асимптотическая линия -- это наклонная асимптота. Однако и другие линии бывает естественно рассматривать в качестве асимптотических.

Пример 7.9 Рассмотрим функцию . Так как при , то естественно рассматривать график как асимптотическую линию при для графика исследуемой функции .

 

Рис.7.10.Асимптотическая линия для графика функции при

 


Вернёмся к наклонным асимптотам -- прямым линиям с уравнением . Для их нахождения в тех случаях, когда значения и не очевидны, можно применять следующую теорему.

Теорема 7.1 Прямая служит наклонной асимптотой для графика при (или при ) в том и только том случае, когда

И


(соответственно, если

и

Таким образом, для нахождения наклонной (или горизонтальной, если получится ) асимптоты достаточно найти два указанных предела и, затем, . Прямая будет искомой асимптотой. Если же какой-либо из этих двух пределов не существует, то нет и соответствующей асимптоты.

Доказательство теоремы. Докажем теорему в случае ; доказательство при проводится совершенно аналогично.

Перепишем условие (7.1), задающее асимптоту, в виде

Так как первый множитель , то второй множитель, стоящий в квадратных скобках, должен быть бесконечно малым, то есть

Но и , так что

откуда следует равенство (7.2). Теперь число уже известно.

Подставляя это число в формулу (7.1), находим, что

откуда следует равенство (7.3).

 

Пример 7.10 Найдём наклонные асимптоты графика .

Попробуем отыскивать сразу оба предела, и при , и при .

Итак, и при , и при имеем и , так что обе наклонные асимптоты совпадают друг с другом и имеют уравнение , то есть, фактически, асимптота только одна.

 

Рис.7.11.График и его наклонная асимптота

 


Замечание 7.2 Из определения асимптоты не следует, что если асимптоты при и при для одного и того же графика существуют, то они непременно совпадают. Это могут быть и различные прямые, как показывает следующий простой пример.

Пример 7.11 Рассмотрим график . При график приближается к горизонтальной асимптоте , а при -- к другой горизонтальной асимптоте .

 

Рис.7.12.График арктангенса имеет две разных горизонтальных асимптоты

 


Различными могут оказаться и не обязательно горизонтальные асимптоты:

Пример 7.12 Рассмотрим функцию . Покажем, что обе её наклонные асимптоты существуют, но не совпадают друг с другом.

Сначала найдём асимптоту при . Согласно доказанной теореме, имеем:


Таким образом, при наклонной асимптотой служит прямая .

Теперь найдём асимптоту при . Имеем:

Поскольку , мы можем считать, что в допредельном выражении . В полученной дроби поделим числитель и знаменатель на положительное число . Тогда под корнем нужно будет поделить на , и получится:

Вычисление проведите сами в качестве упражнения. При этом получается , так что наклонная асимптота при имеет уравнение .

 

Рис.7.13.График и его две наклонных асимптоты

 


Замечание 7.3 Если график имеет асимптоту (например, при ) и существует предел производной:

то . Иными словами, если угловой коэффициент касательной имеет предел, то этот предел равен угловому коэффициенту асимптоты17.

Однако асимптота может существовать и в случае, когда производная не имеет никакого предела при . Дело в том, что значения могут совершать мелкие, но частые колебания относительно ординаты асимптоты, так что значения производной могут при этом испытывать незатухающие колебания. Проиллюстрируем эту возможность следующим примером

 

 

33)



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 314; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.27.70 (0.009 с.)