Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вычислительная машина с одной шинойСодержание книги
Поиск на нашем сайте
В структурах взаимосвязей с одной шиной имеется одна системная шина, обеспечивающая обмен информацией между процессором и памятью, а также между УВВ с одной стороны, и процессором либо памятью — с другой (рис. 38).
Рис. 38. Структура взаимосвязей с одной шиной.
Для такого подхода характерны простота и низкая стоимость. Однако одношинная организация не в состоянии обеспечить высокие интенсивность и скорость транзакций, причем «узким местом» становится именно шина. Вычислительная машина с двумя видами шин
Хотя контроллеры устройств ввода/вывода (УВВ) могут быть подсоединены непосредственно к системной шине, больший эффект достигается применением одной или нескольких шин ввода/вывода. УВВ подключаются к шинам ввода/вывода, которые берут на себя основной трафик, не связанный с выходом на процессор или память. Адаптеры шин обеспечивают буферизацию данных при их пересылке между системной шиной и контроллерами УВВ. Это позволяет ВМ поддерживать работу множества устройств ввода/вывода и одновременно «развязать» обмен информацией по тракту процессор-память и обмен информацией с УВВ.
Рис. 39. Структура взаимосвязей с двумя видами шин.
Подобная схема существенно снижает нагрузку на скоростную шину «процессор-память» и способствует повышению общей производительности ВМ. В качестве примера можно привести вычислительную машину Apple Macintosh II, где роль шины «процессор-память» играет шина NuBus. Кроме процессора и памяти к ней подключаются некоторые УВВ. Прочие устройства ввода/вывода подключается к шине SCSI Bus. Вычислительная машина с тремя видами шин
Дляподключения быстродействующих периферийных устройств в систему шин может быть добавлена высокоскоростная шина расширения.
Рис. 40. Структура взаимосвязей с тремя видами шин.
Шины ввода/вывода подключаются к шине расширения, а уже с нее через адаптер к шине «процессор-память». Схема еще более снижает нагрузку на шину «процессор-память». Такую организацию шин называют архитектурой с «пристройкой» (mezzanine architecture). Физическая реализация шин
Кратко остановимся на различных аспектах физической реализации шин в вычислительных машинах и системах. Механические аспекты
Основная шина, объединяющая устройства вычислительной машины, обычно размещается на так называемой объединительной или материнской плате. Шину образуют тонкие параллельные медные полоски, поперек которых через большие интервалы установлены разъемы для подсоединения устройств ВМ. Подключаемые к шине устройства обычно также выполняются в виде печатных плат, часто называемых дочерними платами, модулями или платами расширения. Дочерние платы вставляются в разъемы на материнской плате. В дополнение к тонким сигнальным лики на материнской плате имеются также и более широкие проводящие линии, которым к дочерним платам подводится питающее напряжение. Несколько контактов разъема обычно подключаются к общей точке — «земле». «Земля» на материнской плате реализуется либо в виде медного слоя (одного из внутренних слоев многослойной печатной платы), либо как широкая медная дорожка на обратной стороне материнской платы. Контактные пружины в разъемах обеспечивают независимое подключение сигнальных линий, расположенных по обеим сторонам вставляемой в разъем дочерней платы. При создании соединительных разъемов прилагаются значительные усилия с тем, чтобы гарантировать надежный контакт после многократного извлечения платы из разъема, а также при длительной (многолетней) эксплуатации разъема в загрязненной или коррозийной среде. «Механические» спецификации шины обычно включают такие детали, как размеры плат, размеры и размещение направляющих для установки платы, разрешенное место для установки кабельного разъема, максимальная высота элементов на плате и т. д. Электрические аспекты
Все устройства, использующие шину, электрически подсоединены к ее сигнальным линиям, представляющим собой электрические проводники. Меняя уровни напряжения на сигнальных линиях, ведущее устройство формирует на них информационные или управляющие сигналы. Когда ведущее устройство выставляет на сигнальной шине какой-то уровень напряжения, этот уровень может быть воспринят приемниками в любой точке линии. Такое описание дает лишь идеализированную картину происходящих на шине процессов — реальные процессы значительно сложнее. Схему, меняющую напряжение на сигнальной шине, обычно называют драйвером или возбудителем шины. В принципе драйвером может быть любая цифровая схема, поскольку на ее цифровом выходе всегда присутствует один из двух возможных уровней напряжения. При реализации шины необходимо предусмотреть возможность отключения драйвера от сигнальной линии на период, когда он не использует шину. Один из возможных способов обеспечения подобного режима — применение драйвера, выход которого может находиться в одном из трех состояний: «высокий уровень напряжения» (high), «низкий уровень напряжения» (low) и «отключен» (off). Для перевода в состояние «off», эквивалентное отключению выхода драйвера от сигнальной линии, используется специальный вход драйвера. Режим «off» необходим для исключения возможности одновременного управления шиной двумя или более устройствами, в противном случае на линиях могут возникать пиковые выбросы напряжения или искаженные сигналы, которые кроме некорректной передачи информации могут привести к преждевременному отказу электронных компонентов. Совместное использование линии шины несколькими устройствами возможно также за счет подключения этой линии к выходу драйвера через резистор, соединенный с источником питания. В зависимости от полупроводниковой технологии, примененной в выходных каскадах драйвера, подобную возможность обеспечивают схемы с открытым коллектором (ТТЛ), открытым стоком (МОП) или открытым эмиттером (ЭСЛ). Данный способ не только исключает электрические конфликты на шине, но и позволяет реализовать очень полезный вид логической операции, известный как «монтажное ИЛИ» или «монтажное И» (трактовка зависит от соответствия между уровнями напряжения и логическими значениями 1 и 0). Если к линии одновременно подключается несколько драйверов, то сигнал на линии представляет собой результат логического сложения (операция ИЛИ) всех поступивших на линию сигналов. Это оказывается весьма полезным при решении задачи арбитража, которая рассматривается позже. В некоторых шинах «монтажное ИЛИ» используется лишь в отдельных сигнальных линиях, но иногда эту операцию допускают по отношению ко всем линиям шины. Приемниками в операциях на шинах называют схемы, сравнивающие уровень сигнала на входе со стандартными значениями, формируемыми внутренними цепями приемников. По итогам сравнения приемник генерирует выходной сигнал, уровень которого соответствует одному из двух возможных логических значений – 1 или 0. Трансивер (приемопередатчик) содержит приемник и драйвер, причем выход драйвера и вход приемника сводятся в общую точку. Рассматривая процесс распространения сигнала по сигнальной линии, необходимо учитывать четыре основных фактора: · скорость распространения; · отражение; · перекос; · эффекты перекрестного влияния. Теоретическая граница скорости распространения сигнала — скорость света в свободном пространстве, то есть около 300 мм/нс. Реальная скорость, определяемая физическими характеристиками сигнальных линий и нагрузкой, не может превысить 70% от скорости света. Процессы в линии рассмотрим на примере сигнальной линии, которая через резистор, соединенный с источником питания, удерживается на уровне напряжения, соответствующем логической единице. Сигнал драйвера «подтягивает» линию к своему уровню напряжения. Изменение напряжения распространяется от точки подключения драйвера в обоих направлениях, пока на всей линии не установится уровень сигнала драйвера. Характер распространения сигнала определяют емкость, индуктивность и характеристическое сопротивление линии, локальные значения которых по длине линии зависят от локальных свойств проводника и его окружения. По мере распространения по реальной линии сигнал преодолевает области с различным сопротивлением. Там, где оно меняется, сигнал не может оставаться постоянным, поскольку меняется соотношение между током и напряжением. Часть сигнала продолжает продвижение, а часть — отражается в противоположную сторону. Прямой и отраженный сигналы могут повторно отражаться, в результате чего на линии формируется сложный результирующий сигнал. В конце линии сигнал отражается назад, если только он не поглощен правильно подобранным согласующим резистором. Если на конце линии имеется согласующий резистор, с сопротивлением, идентичным импедансу линии, сигнал будет поглощен без отражения. Такие резисторы должны размещаться по обоим концам сигнальной линии. К сожалению, точное значение импеданса реальной линии никогда не известно, из-за чего номиналы резисторов невозможно точно согласовать с линией, и отражение всегда имеет место. При параллельной передаче по линиям шины битов адреса или данных сигналы на разных линиях достигают соответствующих приемников совсем не одновременно. Это явление известно как перекос сигналов. Распространяясь по линии, сигнал создает вокруг нее электростатическое и магнитное поля. Сигнальные линии в шине располагаются параллельно и в непосредственной близости одна от другой. Поля от близко расположенных линий перекрываются, приводя к тому, что сигнал на одной линии влияет на сигнал в другой. Этот эффект называют перекрестной или переходной помехой. Наиболее очевидный способ уменьшения перекрестной помехи эффекта – пространственно разнести линии шины так, чтобы их поля не влияли на «соседей», – для печатной платы ограниченного размера не подходит. К снижению эффектов перекрестного влияния ведет уменьшение взаимных емкости и индуктивности линий, чего можно добиться, разместив вблизи сигнальных линий «земляные» линии или включив в многослойную печатную плату «земляные» слои. Это, однако, приводит к нежелательному эффекту увеличения собственной емкости линий. Наиболее распространенный подход к снижению перекрестной помехи состоит в разделении линий изолятором с малой диэлектрической постоянной. В целом, при проектировании шин обычно используется комбинация перечисленных методов борьбы с перекрестной помехой. Из-за несовершенства физической реализации сигнальных линий фронты импульсов по мере распространения сигналов меняются, соответственно, меняется и форма сигнала. Для каждой шины существует некое минимальное значение ширины импульса, при которой он еще способен дойти от одного конца к другому так, что его еще можно распознать. Эта ширина выступает в качестве основного ограничения на полосу пропускания данной шины, то есть на число импульсов, которые могут быть переданы по шине в единицу времени. Поскольку драйвер одновременно «видит» две линии, передающие информацию в противоположных направлениях, он должен поддерживать двойную по сравнению с одной линией величину тока. Для типичных линий импеданс не превышает 20 Ом, а сигналы имеют уровень порядка 3 В, что выражается в величине тока около 150 мА. Приведенные цифры для современных драйверов не составляют проблемы, поскольку применяемые в настоящее время схемы способны приспособиться к гораздо худшим параметрам сигналов. Порождаемый сигналом ток замыкается через «земляной» контакт драйвера. Когда одновременно активны все сигнальные линии, ток возврата через «землю» может быть весьма большим. Положение осложняет то, что ток этот не является постоянным и в моменты подключения и отключения драйвера содержит высокочастотные составляющие. Кроме того, из-за сопротивления и индуктивности «земляного» слоя печатной платы потенциалы на «земляных» выводах дочерних плат могут различаться. Это может приводить к неверной оценке сигналов приемниками, следствием чего становится некорректное срабатывание логических схем. С «земляным» шумом легче бороться на стадии проектирования шины. Прежде всего, необходимо улучшать характеристики «земляных» слоев на материнской и дочерних платах. Между системами заземления материнской и дочерних плат должно быть много хорошо распределенных надежных контактов. Для высокоскоростных шин на каждые четыре сигнальных шины следует иметь отдельный «земляной» контакт. Кроме того, дочерняя плата должна быть спроектирована так, чтобы «земляной» ток от данного драйвера протекал к тому «земляному» контакту, который расположен как можно ближе к сигнальным выводам. «Земля» материнской платы обычно реализуется в виде внутреннего медного слоя в многослойной печатной плате; отверстия с зазором вокруг сигнальных выводов предотвращают короткое замыкание сигнального вывода с этим слоем. Разъем должен быть достаточно широким, чтобы на дочерней плате трансиверы можно было разместить по возможности ближе к нему, что позволяет сократить длину тех участков шины, где нарушается ее неразрывность. В целом ряде известных шин многие из рассмотренных положений игнорируются. По практическим соображениям используются линии с высоким импедансом. Надежность работы с такими «плохими» шинами достигается за счет их замедления: затягивание перехода сигналов от одного уровня напряжения к другому приводит к уменьшению отражений. Снижается также влияние перекрестных помех. Высокое быстродействие драйверов шины имеет и отрицательную сторону: они оказываются слишком быстрыми для управляемых ими шин, при этом сигналы на линиях сильно искажаются. Эта проблема обычно преодолевается за счет введения задержки, часто называемой временем установления сигнала (временем успокоения). Задержка выбирается так, что сигналы стабилизируются до момента их использования. Зачастую достаточно задержки, принципиально присущей используемым схемам, но иногда приходится вводить и явную задержку. В синхронных шинах, где для синхронизации транзакций используется единая система тактовых импульсов (ТИ), такая задержка может быть добавлена весьма просто путем замедления тактирования. Так, можно разрешить всем сигналам изменяться только по одному из фронтов ТИ, что создает достаточную заминку для распространения сигналов и их стабилизации. В асинхронных шинах проблема должна быть решена либо в самом драйвере. либо за счет введения искусственной приостановки, компенсирующей излишнее быстродействие драйвера. Еще одна возможность – замедление цепей приемника. Распределение линий шины
Любая транзакция на шине начинается с выставления ведущим устройством адресной информации. Адрес позволяет выбрать ведомое устройство и установить соединение между ним и ведущим. Для передачи адреса используется часть сигнальных линий шины, совокупность которых часто называют шиной адреса (ША). На ША могут выдаваться адреса ячеек памяти, номера регистров ЦП, адреса портов ввода/вывода и т. п. Многообразие видов адресов предполагает наличие дополнительной информации, уточняющей вид, используемый в данной транзакции. Такая информация может косвенно содержаться в самом адресе, но чаще передается по специальным управляющим линиям шины. Разнообразной может быть и структура адреса. Так, в адресе может конкретизироваться лишь определенная часть ведомого, например, старшие биты адреса могут указывать на один из модулей основной памяти, в то время как младшие биты определяют ячейку внутри этого модуля. В некоторых шинах предусмотрены адреса специального вида, обеспечивающие одновременный выбор определенной группы ведомых либо всех ведомых сразу (broadcast). Такая возможность обычно практикуется в транзакциях записи (от ведущего к ведомым), однако существует также специальный вид транзакции чтения (одновременно от нескольких ведомых общему ведущему). Английское название такой транзакции чтения broadcall можно перевести как «широковещательный опрос». Информация, возвращаемая ведущему, представляет собой результат побитового логического сложения данных, поступивших от всех адресуемых ведомых. Число сигнальных линий, выделенных для передачи адреса (ширина шины адреса), определяет максимально возможный размер адресного пространства. Это одна из базовых характеристик шины, поскольку от нее зависит потенциальная емкость адресуемой памяти и число обслуживаемых портов ввода/вывода. Совокупность линий, служащих для пересылки данных между модулями системы, называют шиной данных (ШД). Важнейшие характеристики шины данных – ширина и пропускная способность. Ширина шины данных определяется количеством битов информации, которое может быть передано по шине за одну транзакцию (цикл шины). Цикл шины следует отличать от периода тактовых импульсов — одна транзакция на шине может занимать несколько тактовых периодов. В середине 1970-х годов типовая ширина шины данных составляла 8 бит. В наше время это обычно 32, 64 или 128 бит. В любом случае ширину шины данных выбирают кратной целому числу байтов, причем это число, как правило, представляет собой целую степень числа 2. Элемент данных, задействующий всю ширину ШД, принято называть словом, хотя в архитектуре некоторых ВМ понятие «слово» трактуется по-другому, то есть слово может иметь разрядность, не совпадающую с шириной ШД. В большинстве шин используются адреса, позволяющие указать отдельный байт слова. Это свойство оказывается полезным, когда желательно изменить в памяти лишь часть полного слова. При передаче по ШД части слова пересылка обычно производится по тем же сигнальным линиям, что и в случае пересылки полного слова, однако в ряде шин «обрезанное» слово передается по младшим линиям ШД. Последний вариант может оказаться более удобным при последующем расширении шины данных, поскольку в этом случае сохраняется преемственность со «старой» шиной. Ширина шины данных существенно влияет на производительность ВМ. Так, если шина данных имеет ширину вдвое меньшую чем длина команды, ЦП в течение каждого цикла команды вынужден осуществлять доступ к памяти дважды. Пропускная способность шины характеризуется количеством единиц информации (байтов), которые допускается передать по шине за единицу времени (секунду), а определяется физическим построением шины и природой подключаемых к ней устройств. Очевидно, что чем шире шина, тем выше ее пропускная способность. Некоторые шины содержат дополнительные линии, используемые для обнаружения ошибок, возникших в процессе передачи. Выделение по одной дополнительной линии на каждый отдельный байт данных позволяет контролировать любой байт по паритету, причем и в случае пересылки по ШД лишь части слова. Возможен и иной вариант контроля ошибок. В этом случае упомянутые дополнительные линии используются совместно. По ним передается корректирующий код, благодаря которому ошибка может быть не только обнаружена, но и откорректирована. Такой метод удобен лишь при пересылке по шине полных слов. Если адрес и данные в шине передаются по независимым (выделенным) сигнальным линиям, то ширина ША и ШД обычно выбирается независимо. Наиболее частые комбинации: 16-8, 16-16, 20-8, 20-16, 24-32 и 32-32. Во многих шинах адрес и данные пересылаются по одним и тем же линиям, но в разных тактах цикла шины. Этот прием называется временным мультиплексированием и будет рассмотрен позже. Здесь же отметим, что в случае мультиплексирования ширина ША и ширина ШД должны быть взаимоувязаны. Применение раздельных шин адреса и данных позволяет повысить эффективность использования шины, особенно в транзакциях записи, поскольку адрес ячейки памяти и записываемые данные могут передаваться одновременно. Помимо трактов пересылки адреса и данных, неотъемлемым атрибутом любой шины являются линии, по которым передается управляющая информации и информация о состоянии участвующих в транзакции устройств. Совокупность таких линий принято называть шиной управления(ШУ), хотя такое название представляется не совсем точным. Сигнальные линии, входящие в ШУ, можно условно разделить на несколько групп. Первую группу образуют линии, по которым пересылаются сигналы управления транзакциями,то есть сигналы, определяющие: · тип выполняемой транзакции (чтение или запись); · количество байтов, передаваемых по шине данных, и, если пересылается часть слова, то какие байты; · какой тип адреса выдан на шину адреса; · какой протокол передачи должен быть применен. На перечисленные цели обычно отводится от двух до восьми сигнальных линий. Ко второй группе отнесем линии передачи информации состояния (статуса). В эту группу входят от одной до четырех линий, по которым ведомое устройство может информировать ведущего о своем состоянии или передать код возникшей ошибки. Третья группа – линии арбитража. Вопросы арбитража рассматриваются несколько позже. Пока отметим лишь, что арбитраж необходим для выбора одного из нескольких ведущих, одновременно претендующих на доступ к шине. Число линий арбитража в разных шинах варьируется от 3 до 11. Четвертую группу образуют линии прерывания. По этим линиям передаются запросы на обслуживание, посылаемые от ведомых устройств к ведущему. Под собственно запросы обычно отводятся одна или две линии, однако при одновременном возникновении запросов от нескольких ведомых возникает проблема арбитража, для чего могут понадобиться дополнительные линии, если только с этой целью не используются линии третьей группы. Пятая группа — линии для организации последовательных локальных сетей. Наличие от 1 до 4 таких линий стало общепринятой практикой в современных шинах. Обусловлено это тем, что последовательная передача данных протекает значительно медленнее, чем параллельная, и сети значительно выгоднее строить, не загружая быстрые линии основных шин адреса и данных. Кроме того, шины этой группы могут быть использованы как полноценный, хотя и медленный, избыточный тракт для замены ША и ШД в случае их отказа. Иногда шины пятой группы назначаются для реализации специальных функций, таких, например, как обработка прерываний или сортировка приоритетов задач. В некоторых ШУ имеется шестая группа сигнальных линий — от 4 до 5 линий позиционного кода, подсоединяемых к специальным выводам разъема. С помощью перемычек на этих выводах можно задать уникальный позиционный код разъема на материнской плате или вставленной в этот разъем дочерней платы. Такой код может быть использован для индивидуальной инициализации каждой отдельной платы при включении или перезапуске системы. Наконец, в каждой шине обязательно присутствуют линии, которые в нашей классификации входят в седьмую группу, которая по сути является одной из важнейших. Это группа линий тактирования и синхронизации. При проектировании шины таким линиям уделяется особое внимание. В состав группы, в зависимости от протокола шины (синхронный или асинхронный), входят от двух до шести линий. В довершение необходимо упомянуть линии для подвода питающего напряжения и линии заземления. Большое количество линий в шине предполагает использование разъемов со значительным числом контактов. В некоторых шинах разъемы имеют сотни контактов, где предусмотрены подключение вспомогательных шин специального назначения, свободные линии для локального обмена между дочерними платами, множественные параллельно расположенные контакты для «размножения» питания и «земли»
|
||||
Последнее изменение этой страницы: 2016-09-18; просмотров: 733; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.165.192 (0.012 с.) |