Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Взаимодействие ионизирующего излучения с веществом

Поиск

Заряженные частицы и g-фотоны, распространяясь в веществе, взаимодействуют с электронами и ядрами, в результате чего изменяется состояние как вещества, так и частиц.

Основным механизмом потерь энергии заряженной частицы (a и b) при прохождении через вещество является ионизационное торможение. При этом ее кинетическая энергия расходуется на возбуждение и ионизацию атомов среды.

Взаимодействие частицы с веществом количественно оценивается линейной плотностью ионизации, линейной тормозной способностью вещества и средним линейным пробегом частицы.

Под линейной плотностью ионизации i понимают отношение числа d n ионов одного знака, образованных заряженной ионизирующей частицей на элементарном пути d l, к этому пути: i = d n/ d l.

Линейной тормозной способностью вещества S называют отношение энергии d Е, теряемой заряженной ионизирующей частицей при прохождении элементарного пути d l в веществе, к длине этого пути: S = d E /d l.

Средним линейным пробегом заряженной ионизирующей частицы R является среднее значение расстояния между началом и концом пробега заряженной ионизирующей частицы в данном веществе.

График зависимости линейной плотности ионизации от пути х, проходимого
a-частицей в среде (воздух), показан на рис. 27.3. По мере продвижения частицы в среде уменьшаются ее энергия и скорость, линейная плотность ионизации при этом возрастает и только при завершении пробега частицы резко убывает. Возрастание i обусловлено тем, что при меньшей скорости
a-частица больше времени проводит вблизи атома и, таким образом, возрастает вероятность ионизации атома. Как видно из рисунка, линейная плотность ионизации a-частиц естественно-радиоактивных изотопов в воздухе при нормальном давлении составляет i = (2 ¸ 8) • 106 пар ионов/м.

Так как для ионизации молекул, входящих в состав воздуха, требуется энергия около 34 эВ, то значения линейной тормозной спо­собности вещества (воздуха) S лежат в интервале 70—270 МэВ/м.

Средний линейный пробег a-частицы зависит от ее энергии и от плотности вещества. В воздухе он равен нескольким сантиметрам, в жидкостях и в живом орга-
низме — 10—100 мкм. После того как скорость a-частицы уменьшается до скорости молекулярно-теплового движения, она, захватив два электрона в веществе, превращается в атом гелия.

Ионизация и возбуждение являются первичными процессами. Вторичными процессами могут быть увеличение скорости молекулярно-теплового движения частиц вещества, характеристическое рентгеновское излучение, радиолюминесценция, химические процессы.

Взаимодействие a-частиц с ядрами — значительно более редкий процесс, чем ионизация. При этом возможны ядерные реакции, а также рассеяние a-частиц.

Бета-излучение, так же как и a-излучение, вызывает ионизацию вещества. В воздухе линейная плотность ионизации b-частицами может быть вычислена по формуле

i = k(c/ u )2,

где k»4600 пар ионов/м, с — скорость света, a u— скорость b-частиц.

Кроме ионизации и возбуждения b-частицы могут вызывать и другие процессы. Так, например, при торможении электронов возникает тормозное рентгеновское излучение. Бета-частицы рассеиваются на электронах вещества, и их пути сильно искривляются в нем. Если электрон движется в среде со скоростью, превышающей фазовую скорость распространения света в этой среде, то возникает характерное черепковское излучение (излучение ЧерепковаВавилова).

При попадании b+-частицы (позитрона) в вещество с большой вероятностью происходит такое взаимодействие ее с электроном, в результате которого пара электрон — позитрон превращается в два g-фотона. Этот процесс, схема которого показана на рис. 27.4, называют аннигиляцией. Энергия каждого g-фотона, возникающего при аннигиляции, оказывается не меньше энергии покоя электрона или позитрона, т. е. не менее 0,51 МэВ.

Несмотря на разнообразие процессов, приводящих к ослаблению излучения, можно приближенно считать, что интенсивность его изменяется по экспоненциальному закону, подобному (26.8). В качестве одной из характеристик поглощения b-излучения веществом используют слой половинного ослабления, при прохождении через который интенсивность b-частиц уменьшается вдвое.

Можно считать, что в ткани организма b-частицы проникают на глубину 10—15 мм. Защитой от b-излучения служат тонкие алюминиевые, плексигласовые и другие экраны. Так, например, слой алюминия толщиной 0,4 мм или воды толщиной 1,1 мм уменьшает вдвое
b-излучение от фосфора .

При попадании g-излучения в вещество наряду с процессами, характерными для рентгеновского излучения (когерентное рассеяние, эффект Комптона, фотоэффект, см. § 26.3), возникают и такие явления, которые неспецифичны для взаимодействия рентгеновского излучения с веществом. К этим процессам следует отнести образование пары электрон — позитрон, происходящее при энергии g-фотона, не меньшей суммарной энергии покоя электрона и позитрона (1,02 МэВ), и фотоядерные реакции, которые возникают при взаимодействии
g-фотонов больших энергий с атомными ядрами. Для возникновения фотоядерной реакции необходимо, чтобы энергия g-фотона была не меньше энергии связи, приходящейся на нуклон.

В результате различных процессов под действием g-излучения образуются заряженные частицы; следовательно, g -излучение также является ионизирующим.

Ослабление пучка g-излучения в веществе обычно описывают экспоненциальным законом (26.8). Линейный (или массовый) коэффициент ослабления можно представить как сумму соответствующих коэффициентов ослабления, учитывающих три основных процесса взаимодействия — фотоэффект, Комптон-эффект и образование электрон-позитронных пар:

m = mф + mнк + mп. (27.14)

 

 

Эти основные процессы взаимодействия происходят с разной вероятностью, которая зависит от энергии g-фотона (рис. 27.5; кривая получена для свинца). Как видно из рисунка, при малых энергиях основную роль играет фотоэффект, при средних — Комптон-эффект и при энергиях, больших 10 МэВ, — процесс образования пары электрон — позитрон.

Экспоненциальный закон ослабления пучка g-фотонов выполняется приближенно, особенно при больших энергиях. Это обусловлено вторичными процессами, возникающими при взаимодействии g-излучения с веществом. Так, например, электроны и позитроны обладают энергией, достаточной для образования новых g-фотонов в результате торможения и аннигиляции.

Поток нейтронов тоже является ионизирующим излучением, так как в результате взаимодействия нейтронов с ядрами атомов образуются заряженные частицы и g-излучение. Проиллюстрируем это несколькими примерами:

— деление ядер при захвате ими нейтронов: образование радиоактивных осколков,
g-излучения и заряженных частиц;

— образование a-частиц, например:

— образование протонов, например: .

 



Поделиться:


Последнее изменение этой страницы: 2016-09-13; просмотров: 877; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.247.223 (0.009 с.)