Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие закона больших чисел.↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги Поиск на нашем сайте
Содержание закона больших чисел в широком смысле: при очень большом числе случ. явлений средний их рез-т практически перестает быть случ. и может быть предсказан с большой степенью опр-сти. В узком смысле слова под законом больших чисел в теории вер. понимается ряд мат. теорем, в каждой из к-рых для тех или иных условий устанавливается факт приближения средних хар-к большого числа опытов к некот. опр. постоянным. Простейшей из этих теорем является т. Бернулли. Она утверждает, что при большом числе опытов частота соб. приближается (точнее – сходится по вер.) к вер. этого соб. Другие, более общие формулировки, устанавливабт факт и условия сходимости по вероятности тех или иных СВ к постоянным, не случайным вел-нам. Закон больших чисел играет важную роль в практических применениях т.в.. Св-во случ. вел-н при опр. условиях вести себя практически как не случ. позволяет уверенно оперировать с этими вел-нами, предсказывать рез-ты массовых случ. явлений (это большое число выполняемых однородных опытов или большое число складывающихся случ. воздействий, порождающих в своей сов-сти случ. вел-ну, подчиненную вполне опр. закону) почти с полной опр-стью.
Неравенство Чебышева. Нер-во Чебышева относится к группе «закона больших чисел». Пусть имеется СВ Х с мат. ожиданием(м.о.) mx и Dx. Нер-во Чебышева утверждает, что, каково бы ни было положительное число α, вер. того, что вел-на Х отклонится от своего м.о не меньше чем на α, ограничена сверху вел-ной Dx/ α2: P(|X - mx |≥α)≤ Dx/ α2. Док-во: Пусть вел-на Х прерывная, с рядом распр.:
Изобразим возм. знач. вел-ны Х и ее м.о mx в виде точек на числовой оси Ox. Зададим некоторым значением α>0 и вычислим вер. того, что вел-на Х отклонится от своего м.о не меньше, чем на α: P(|X - mx |≥α) – формула (1). Для этого отложим от точки mx вправо и влево по отрезку длиной α; получим отрезок АВ. Вер. (1) есть не что иное, как вер. того, что случ. точка Х попадет не внутрь отрезка АВ, а вовне его: P(|X - mx |≥α) = P(XËAB). Для того, чтобы найти эту вер., нужно просуммировать вер. всех тех знач. Х, кот. лежат вне отрезка АВ. Запишем это следующим образом: P(|X - mx |≥α) = - формула (2), где запись |X - mx |≥α под знаком суммы ознаачет, что суммирование распространяется на все те знач., для которых точки Х лежат вне отрезка АВ. С другой стороны напишем выражение дисперсии вел-ны Х: D(X) = M[(X - mx)2] = - формула (3). Т.к. все члены суммы (3) неотрицательны, она может только уменьшиться, если мы распространим ее не на все знач. Х, а только на некоторые, в частности на те, кот. лежат вне отрезка АВ: D(X) ≥ . Заменим под знаком суммы выражение |X - mx | через α. Т.к. для всех членов суммы |X - mx |≥α, то от такой замены сумма тоже может уменьшиться; значит, D(X) ≥ . Но согласно формуле (2) сумма, стоящая в правой части последнего рав-ва есть не что иное, как вер. попадания случайной точки вовне отрезка АВ; следовательно, D(X) ≥ α2P(|X - mx |≥α), откуда непосредственно вытекает доказываемое нер-во. В случае, когда вел-на Х непрерывна, док-во проводится аналогичным образом с заменой вер. p элементом вер., а конечных сумм – интегралами. Действительно, P(|X - mx |>α) = , где f(x) – плотность распр. вел-ны Х. Далее, имеем: D(X) = ≥ , где знак |X - mx |>α под интегралом означает, что интегрирование распространяется на внешнюю часть отрезка АВ. Заменяя |X - mx | под знаком интеграла через α, получим: D(X) ≥α2* = α2P(|X - mx |>α), откуда и вытекает нер-во Чебышева для непрерывных величин.
40. Теорема Чебышева. Эта теорема устанавливает связь между средним арифметическим наблюденных значений СВ и ее мат. ожиданием. Теор.: При достаточно большом числе независимых опытов среднее арифметическое наблюденных значений СВ сходится по вероятности к ее мат. ожиданию. Запишем теорему Чебышева в виде формулы. Для этого напомним смысл термина «сходится по вероятности». Говорят, что СВ Хn сходится по вероятности к величине а, если при увеличении n вероятность того, что Хn и а будут сколь угодно близки, неограниченно приближается к единице, а это значит, что при достаточно большом n P(|Хn – a|<ε)>1 – δ, где ε, δ – произвольно малые положительные числа. Запишем в аналогичной форме теорему Чебышева. Она утверждает, что при увеличении n среднее арифметическое сходится по вероятности к mx, т.е. P(| - mx|<ε)> 1 – δ. Докажем это нер-во. Величина Y = имеет числовые хар-ки my = mx; Dy = Dx/n. Применим к СВ Y нер-во Чебышева, полагая, что α = ε: P(|Y - my| ≥ε) ≤ Dy/ε2 = Dx/n ε2. Как бы мало ни было число ε, можно взять n таким большим, чтобы выполнялось нер-во Dx/n ε2<δ, где δ – сколь угодно малое число. Тогда P(| - mx|≥ε) <δ, откуда, переходя к противоположному событию, имеем: P(| - mx|<ε)> 1 – δ,
|
||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 368; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.120.59 (0.008 с.) |