Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Начальные и центральные моменты случ. величин.Содержание книги
Поиск на нашем сайте
Начальным моментом к-того порядка СВ Х называется мат. ожидание(м.о.) к-той степени этой вел-ны. Начальн. момент обозначается = M(X)k. Центральным моментом к-того порядка СВ Х назыв. м.о. к-той степени отклонения СВ Х от ее м.о., т.е. = (X – M(X))k. Для ДСВ и НСВ формулы для вычисления моментов приведены в таблице:
При к=1 ; при к=2 . Центр. моменты могут быть выражены через нач. моменты по формулам: ;; . м.о. или нач. момент 1-го порядка хар-ет ср. значение СВ. или дисперсия хар-ет степень рассеивания распр. СВ Х отн-но м.о. M(X). служит для хар-ки ассиметрии или скошенности распр. Он имеет размерность куба СВ. Чтобы получить безразмерную вел-ну, ее делят на , где d - среднеквадратич. отклонение. Коэфф ассиметрии служит для хар-ки крутости, т.е. островершинности или плосковершинности распр. Эти св-ва описываются с помощью эксцесса. 30. Биномиальный закон распределения. Пусть проводится n независим. испытаний, в кажд. из которых соб. А может появиться, либо не появиться. Вер. появл. соб. А в единичном испытании постоянна и не меняется от исп. к исп.. Рассмотрим в кач-ве ДСВ Х число появлений соб. А в этих исп. Формула, позволяющая найти вер. появления m раз соб. А в n испытаниях – это форм. Бернулли. Опр.: ДСВ Х, кот. может принимать только целые неотриц. знач. с вер. Pn(m)=P(X=m)= pmqn-m, где p+q=1, p>0, q>0, m= называется распределенной по биномиальному закону, а p – параметром биномиальн. распр. Ряд распр. ДСВ Х распределенной по биномиальному закону можно представить в виде:
Ф-ция распр. в этом случае опр-ся формулой F(x)= . Найдем числовые хар-ки этого распр.. M(X) = (рав-во 1). Запишем рав-во, являющееся биномом Ньютона: (p+q)n= . Продифференцируем последнее рав-во по p: n(p+q)n-1= . Умножим последнее рав-во на p: np(p+q)n-1= . Сравнивая получен. рав-во с рав-вом (1), получаем, что np(p+q)n-1 = M(X). Т.к. p+q=1, то M(X)= np. Для вычисления дисперсии ДСВ, распределенной по биномиальному закону, воспольз. формулой D(X)= M(X2) – (M(X))2. Для СВ распределенной по биномиальн. закону: M(X2) = . Продифференцируем рав-во (p+q)n = дважды по p. Получим n(n–1)(p+q)n—2= . Умножим последнее рав-во на p2 и преобразуем правую часть рав-ва: n(n – 1)(p+q)n —2 p2= — ; n2p2 – np2 = M(X2) — ; n2p2 – np2 = M(X2) – M(X). Для ДСВ распределенной по биномиальн. закону M(X)= np, т.е. n2p2 – np2 = M(X2) – np; M(X2)= n2p2 – np2 + np; D(X)= n2p2 – np2 + np — n2p2 = np(1 – p) = npq. Значит дисперсия ДСВ распределенной по биномиальн. закону вычисляется по формуле: D(X) = npq. .
Закон Пуассона ДСВ Х, кот. может принимать только целые неотриц. знач. с вер. Pm = P(X=m) = , называется распределенной по закону Пуассона с пар-ом распр. λ, где λ=np. В отличие от биномиального распр. здесь СВ может принимать бесконечное мн-во знач., представляющ. собой бесконечн. посл-сть целых чисел(0, 1, 2, 3, … и т.д.). Закон Пуассона описывает число событий m, происходящих за одинаковые промежутки времени. При этом полагается, что события появляются независимо друг от друга с постоянной ср. интенсивностью, кот. хар-ся параметром λ=np. Ряд распр. закона Пуассона имеет вид:
Определение закона Пуассона корректно, т.к. выполнена. Действительно функцию ex можно разложить в ряд, кот. сходится для любого Х. Поэтому eλ = = 1+ λ + λ2/2! + …+ λm/m! +… Тогда = e—λ = e—λ eλ =1. Найдем м.о. и дисперсию СВ Х, распределенной по закону Пуассона. M(X) = = = =λeλ = λe—λ eλ = λ = np. Суммирование начинается с m=1, т.к. 1-ый член суммы соответствующий m=0 равен 0. Дисперсию СВ Х найдем по формуле D(X) = M(X2) – (M(X))2. M(X2) = = e—λ = e—λ = λ2 e—λ + λ e—λ = λ2 e—λ eλ + λ e—λ eλ = λ2 +λ. Тогда D(X) = λ2 +λ — λ2 = λ = np. Т.о. мат. ожидание и дисперсия СВ, распределенной по закону Пуассона, совпадают и равны параметру этого распр. λ. Показательное распределение. Показательным (экспоненциальным) называют распр. вер. НСВ Х, которое описывается ф-цией плотности вер. , где λ>0 постоянна и называется параметром показательного распр. Примером НСВ, распределенной по показательному закону, может служить время между появлениями двух последовательных соб. простейшего потока, где λ – интенсивность потока. Найдем ф-цию распр. F(x) СВ, распределенной по показательному закону: F(x) = = . Итак, Определим числовые хар-ки СВ, распределенной по показательному закону. Мат. ожидание: M(X) = = = . Дисперсия: D(X) = = = 2/λ2 – 1/λ2 = 1/λ2. Среднеквадратическое отклонение σ(Х) = 1/λ и, следовательно, совпадает с мат. ожиданием.
|
|||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 182; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.19.115 (0.009 с.) |