Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Смысл пси-функции. Стандартные условия.Содержание книги Поиск на нашем сайте
Пси-функция не имеет прямого физического смысла, так как является комплексной величиной. Смысл пси-функции сформулировал Макс Борн: квадрат модуля волновой функции даёт плотность вероятности нахождения частицы в некоторой точке с координатами (x,y,z): ; где P – вероятность, V – объём. Волновая функция должна соответствовать условиям: непрерывности, однозначности, конечности, её производные должны быть непрерывны, она должна быть интегрируема.
12. Принцип суперпозиции. См вопрос 10.
Постулаты квантовой механики. 1. Состояние движения частицы описывается пси-функцией, она удовлетворяет УШ (уравнению Шрёдингера) и стационарным условиям. В соответствии с принципом суперпозиции множество пси-функций, описывающих некоторую механическую систему, образует комплексное линейно-векторное пространство. Каждый вектор этого пространства описывает некоторое состояние системы. Любая суперпозиция векторов этого пространства описывает также состояние системы. Для векторов пространства состояний можно вести скалярное произведение: . 2. Каждой динамической переменной в квантовой теории сопоставляется определенный линейный самосопряжённый оператор: . Задача на собственные значения и собственные функции () приводит к вещественным собственным значениям (). Собственные функции отвечающие различным собственным значениям ортогональны (). Совокупность собственных функций образует полную систему, где любая пси-функция может быть представлена как линейная . 3. При измерении числового значения некоторой динамической переменной q, с определенной вероятностью получается одно из собственных значений оператора . Вероятность получения в опыте значения , где - коэффициент разложения пси-функции по собственным значениям оператора . Если пси-функция совпадает с одной из собственных функция, то с вероятностью 1 мы получим при изменении значение .
Операторы физических величин. Операторы физической величины определяется исходя из соответствия их выражения в классической механике, принципа соответствия, соотношения неопределенности Гейзенберга и прежде всего в соответствии с требованием совпадения результатов в рамках квантовой формы экспериментальных данных.
1. Оператор координаты: в соответствии с интерпретации пси-функции , вероятность того, что частица находится в окрестности точки (x,y,z), среднее значение координаты в качестве оператора координаты выбираем . 2. Оператор импульса найдём исходя из соотношений неопределённости Гейзенберга: , задача на собственные значения функции . -собственная функция, отвечающая за собственное значение импульса. Таким образом, собственная функция оператора импульса частицы с энергией и импульсом, сопоставляет волну частоты и волновым числом . 3. Оператор Гамильтона (полной механической энергии) получается в соответствии с принципом классической механики из выражения для полной механической энергии с заменой физических величин их операторами. Оператор Гамильтона – оператор определяющий левую сторону УШ.
Условие одновременной измеримости различных физических переменных. Соотношение неопределённостей. Рассмотрим условия, при которых А и В могут быть одновременно измерены. Пусть в некотором состоянии они имеют определённые значения, тогда их собственные операторы: : . Предположим, что образуют полную систему собственных векторов, тогда для произвольного вектора состояния: . В силу произвольности получаем операторное равенство: . Другими словами, наблюдаемые должны коммутировать. Соотношение неопределённостей Гейзенберга () показывает, что между точностью, с которой одновременно может быть установлено положение частицы, и точностью её импульса существует определённое соотношение. (Соотношение неопределённостей Гейзенберга помогает определить вероятность нахождения частицы в данной точке пространства.)
Оператор момента импульса. Момент импульса: , оператор момента импульса: =- . Компоненты оператора момента импульса: =- . Вследствие коммутативности оператора, частица не может иметь определённые значения 2х, 3х компонентов момента импульса, при этом можно одновременно измерить и получить определённые значения квадрата момента импульса. Перейдя к полярным координатам мы получим: , где ). В силу стандартных условий проекция момента импульса может принимать только дискретный набор значений (Lz=m , m = …). Квадрат момента импульса: , l = … .
|
||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 1458; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.158.142 (0.01 с.) |