Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Экстремум дифференцируемой функцииСодержание книги Поиск на нашем сайте
Пусть функция y = f(x) дифференцируема в -окрестности точки, а в самой точке непрерывна. Тогда если при и при , то х0 - точка максимума;
· если при и при , то х0 - точка минимума. Другими словами: · если в точке х0 функция непрерывна и в ней производная меняет знак с плюса на минус, то х0 - точка максимума; · если в точке х0 функция непрерывна и в ней производная меняет знак с минуса на плюс, то х0 - точка минимума. Билет 24. Алгебра матриц, операции над матрицами и их свойства Матрица - это совокупность чисел, расположенных в виде прямоугольной таблицы. Чтобы отличать матрицу по внешнему виду от определителя, ее заключают в квадратные скобки. Каждый элемент матрицы снабжают двумя индексами: первый соответствует номеру строки, второй - номеру столбца. матрицу называют квадратной, если число строк в ней равно числу столбцов Диагональной называют матрицу, у которой элементы главной диагонали не равны нулю, а все остальные - нули, например: Матрицу, у которой элементы главной диагонали равны единице, а все остальные - нули, называют единичной: Неопределенной называют матрицу, у которой сумма элементов любой строки и любого столбца равна нулю. Две матрицы равны, если равны соответствующие элементы этих матриц. Матрица равна матрице , если а11=b11, al2=bl2, а21=b21, a22=b22. У равных матриц равны определители. В рассматриваемом примере a11a22 - a12a21 = b11b22 - b12b21, но из равенства двух определителей еще не следует равенства самих матриц. Операции над матрицами (их сложение, умножение) постулированы из соображений рациональности. При сложении (вычитании) матриц следует сложить (вычесть) соответствующие элементы этих матриц: При умножении двух матриц (число столбцов первой должно быть равно числу строк второй) i -ю строку первой матрицы умножают на k -й столбец второй. Умножим две матрицы, элементами которых являются числа Руководствуясь приведенным правилом, нетрудно убедиться в том, что [А][В] ≠ [B][A], т.е. результирующая матрица зависит от последовательности расположения матриц сомножителей. По отношению к матрице [A], когда ее определитель не равен нулю, можно составить обратную матрицу [А]-1. Для этого необходимо: а) каждый элемент исходной матрицы [A] заменить его алгебраическим дополнением; б) транспонировать полученную матрицу, т. е. строки сделать столбцами; в) разделить полученную матрицу на определитель исходной матрицы [А]. 26. соответственно ко второй и третьей строкам Вторую строку умножаем на и прибавляем к третьей Возвращаемся к системе уравнений Базисный минор матрицы находится в первых двух столбцах и первых двух строках, ранг равен 2. Поэтому фундаментальная система содержит только одно решение. Переменные и оставляем в левой части, а переменное переносим в правую часть Полагаем , находим , . Итак, собственному числу соответствует собственный вектор . Чтобы избавиться от дроби, умножим собственный вектор на 2, получим собственный вектор с тем же самым собственным числом. В итоге собственному числу соответствует собственный вектор . Ответ: Собственные числа: , , соответствующие собственные векторы: , .
|
15.Интегрирование по частям - Пусть - непрерывно дифференцируемыефункции. Тогда справедлива формула интегрирования по частям . Название “по частям” связано с тем, что для записи интеграла в правой части нужно проинтегрировать “часть” подынтегрального выражения в левой части. Метод интегрирования по частям используется для интегралов вида , , , и некоторых других.
19.Одним из основных результатов математического анализа является теорема Ньютона – Лейбница:
Пусть функция f (x) непрерывна на [ a; b ], а F (x) – какая-либо первообразная функции f на этом отрезке. Тогда
Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f, вычислить ее значения в точках a и b и найти разность F (b) – F (a). Пусть f (x) непрерывна на [ a; b ], g (t) имеет непрерывную производную на [α; β], Тогда если a = g (α), b = g (β), то справедлива формула замены переменной в определенном интеграле: Если функции u (x) и v (x) имеют на [ a; b ] непрерывные производные, то справедлива формула интегрирования по частям: 21.
24. Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц. Матрицей A=Amn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов. Элементы матрицы aij, у которых i=j, называются диагональными и образуют главную диагональ. Для квадратной матрицы (m=n) главную диагональ образуют элементы a11, a22,..., ann. Равенство матриц.A=B, если порядки матриц A и B одинаковы и aij=bij(i=1,2,...,m; j=1,2,...,n) Действия над матрицами. 1.Сложение м атриц - поэлементная операция 2.Вычитание матриц - поэлементная операция 3.Произведение матрицы на число - поэлементная операция 4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B) Amk*Bkn=Cmn причем каждый элемент сij матрицы Cmn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B, т.е. Покажем операцию умножения матриц на примере 5. Возведение в степень m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц. 6.транспонирование матрицы А. Транспонированную матрицу обозначают AT или A' Строки и столбцы поменялись местами Пример Свойства опрераций над матрицами 1. A+B=B+A 2. (A+B)+C=A+(B+C) 3.λ(A+B)=λA+λB 4. A(B+C)=AB+AC 5.(A+B)C=AC+BC 6. λ(AB)=(λA)B=A(λB) 7. A(BC)=(AB)C 8. (A')'=A 9. (λA)'=λ(A)' 10. (A+B)'=A'+B' 11. (AB)'=B'A' Виды матриц1. Прямоугольные: m и n - произвольные положительные целые числа 2. Квадратные: m=n3. Матрица строка: m=1. Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором 4. Матрица столбец: n=1. Например 5. Диагональная матрица: m=n и aij=0, если i≠j. 6. Единичная матрица: m=n и 7. Нулевая матрица: aij=0, i=1,2,...,m j=1,2,...,n 8. Треугольная матрица: все элементы ниже главной диагонали равны 0.Пример. 9. Симметрическая матрица: m=n и aij=aji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательно A'=A Например, 10. Кососимметрическая матрица: m=n и aij=-aji (т.е. на симметричных относительно главной диагонали местах стоят противоположные элементы). Следовательно, на главной диагонали стоят нули (т.к. при i=j имеем aii=-aii)Пример. Ясно, A'=-A 11. Эрмитова матрица: m=n и aii=-ãii (ãji - комплексно - сопряженное к aji, т.е. если A=3+2i, то комплексно - сопряженное Ã=3-2i)Пример
|
|||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 168; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.140.251 (0.007 с.) |