Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Статическая устойчивость синхронного генератораСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Статическая устойчивость синхронной машины, работающей параллельно с сетью, - это способность сохранять синхронное вращение (n2=n1) при изменении внешнего вращающего или тормозного момента Мвн, приложенного к ее валу. Статическая устойчивость обеспечивается только при углах q < qкр, соответствующих электромагнитному моменту М < Мmax. Допустим, что синхронный генератор работает при некотором внешнем моменте Мвн, передаваемом его ротору от первичного двигателя. При этом ось полюсов ротора сдвинута на некоторый угол q относительно оси суммарного потока Ф и машина развивает электромагнитный момент М, который можно считать равным тормозному моменту (точки А и С на рисунке). Если момент Мвн возрастает, то ротор генератора ускоряется, что приводит к увеличению угла q до значения (q + Δq). При работе машины в точке А возрастание угла q вызывает увеличение электромагнитного момента до значения (М + Δ М) (точка В). В результате равновесие моментов, действующих на вал ротора, восстанавливается и машина после некоторого колебательного процесса продолжает работать с синхронной частотой вращения. Аналогичный процесс происходит и при уменьшении Мвн. При этом уменьшаются угол q и электромагнитный момент М. Следовательно, равновесие моментов также восстанавливается. Однако если машина работает при qкр < q < 1800 (точка С), то увеличение угла q при возрастании Мвн вызывает уменьшение электромагнитного момента до значения (М - ΔМ) (точка D). Равновесие моментов, действующих на вал ротора, нарушается. Ротор продолжает ускоряться, а угол q - возрастать, что может привести к двум результатам: 1) машина переходит в точку устойчивой работы (аналогичную точке А) на последующих положительных полуволнах угловой характеристики; 2) ротор по инерции проскакивает устойчивые положения, при этом происходит выпадение из синхронизма, т. е. ротор начинает вращаться с частотой, отличающейся от частоты вращения магнитного поля статора. Выпадение, из синхронизма является аварийным режимом. При этом ток якоря возрастает, так как ЭДС генератора Е и напряжение сети Uc в этом режиме могут складываться по контуру «генератор - сеть», а не вычитаться, как при нормальной работе. Если внешний момент при работе машины в точке С снижается, то угол q уменьшается, электромагнитный момент возрастает, что приводит к дальнейшему уменьшению угла q и переходу к работе в устойчивой точке А. Если машина работает в установившемся режиме при некотором угле q, то малое отклонение Δq от этого угла сопровождается возникновением момента ΔМ = (dM/dq) Δq который стремится восстановить исходный угол q. Этот момент называют синхронизирующим. Ему соответствует понятие синхронизирующей мощности ΔРЭМ = (dРЭМ/dq) Δq. Производные dM/dq и dРЭМ/dq называют соответственно удельным синхронизирующим моментом и удельной синхронизирующей мощностью. Удельный синхронизирующий момент имеет максимальное значение при q = 0. С возрастанием q он уменьшается, а при q = qкр он равняется нулю, поэтому синхронные машины обычно работают с q = 20-30°, что соответствует приблизительно двукратному запасу по моменту. Перегрузочная способность синхронной машины оценивается отношением: КП = Mmax/MH = Рmax/РН. Согласно ГОСТу это отношение для мощных генераторов должно быть не менее 1,6—1,7, а для синхронных двигателей большой и средней мощности — не менее 1,65. Для неявнополюсной машины удельный синхронизирующий момент и мощность: dM/dq = Mmax cosq; dРЭМ/dq = РЭМ max cosq. Удельная синхронизирующая мощность и момент обратно пропорциональны индуктивному сопротивлению Х1 или Хd. Для устойчивой работы индуктивное сопротивление машины должно быть возможно наименьшим, для чего необходимо увеличить воздушный зазор. При этом требуется увеличение МДС возбуждения, что ведет к удорожанию машины. Поэтому в современных синхронных машинах для повышения устойчивости применяют автоматическое регулирование тока возбуждения при изменении нагрузки. При увеличении тока возбуждения возрастает ЭДС Еf и момент Mmax. При этом увеличивается устойчивость машины. При работе на электрическую сеть синхронные генераторы должны работать с перевозбуждением, обеспечивающим повышение перегрузочной способности. При номинальном режиме ток I 1 должен отставать от напряжения U 1 и иметь cosφ1= 0,8. Генераторы большой мощности снабжают регуляторами возбуждения сильного действия, которые реагируют не только на отклонение напряжения U 1, но и на производные во времени dU1/dt и d I1/dt, последняя из которых определяется изменениями угла dq/dt. В машинах малой и средней мощности применяют системы фазового компаундирования, обеспечивающие автоматическое изменение тока возбуждения при изменении тока нагрузки. Обмотка возбуждения 2 питается от обмотки якоря 1 через полупроводниковый выпрямитель 6. К входу выпрямителя параллельно подключены вторичные обмотки двух трансформаторов 3 и 5. Их первичные обмотки включены параллельно и последовательно с обмоткой якоря 1. Последовательно с вторичной обмоткой трансформатора 3 включен реактор 4. Для удержания синхронной машины в синхронизме при снижении напряжения в сети (при удаленных коротких замыканиях) применяют форсировку тока возбуждения. Форсировка осуществляется автоматически релейной защитой, которая замыкает накоротко резисторы или реостаты в цепи обмотки возбуждения возбудителя или подвозбудителя. Эффективность форсировки возбуждения характеризуется кратностью предельного установившегося напряжения возбудителя: Кf =Uf max/Uf н, (где Uf max - наибольшее установившееся напряжение возбудителя; Uf н - номинальное напряжение возбуждения), а также скоростью нарастания напряжения возбудителя duf/dt. В крупных синхронных генераторах должно быть Кf≥1,8-2,0 и
|
||||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 3822; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.49.73 (0.007 с.) |