ТОП 10:

How Facial Recognition Systems Work



 

Anyone who has seen the TV show "Las Vegas" has seen facial recognition software in action. In any given episode, the security department at the fictional Montecito Hotel and Casino uses its video surveillance system to pull an image of a card counter, thief or blacklisted individual. It then runs that image through the database to find a match and identify the person. By the end of the hour, all bad guys are escorted from the casino or thrown in jail. But what looks so easy on TV doesn't always translate as well in the real world.

In 2001, the Tampa Police Department installed cameras equipped with facial recognition technology in their Ybor City nightlife district in an attempt to cut down on crime in the area. The system failed to do the job, and it was scrapped in 2003 due to ineffectiveness. People in the area were seen wearing masks and making obscene gestures, prohibiting the cameras from getting a clear enough shot to identify anyone.

Boston's Logan Airport also ran two separate tests of facial recognition systems at its security checkpoints using volunteers. Over a three month period, the results were disappointing. According to the Electronic Privacy Information Center, the system only had a 61.4 percent accuracy rate, leading airport officials to pursue other security options.

In this article, we will look at the history of facial recognition systems, the changes that are being made to enhance their capabilities and how governments and private companies use (or plan to use) them.

Humans have always had the innate ability to recognize and distinguish between faces, yet computers only recently have shown the same ability. In the mid 1960s, scientists began work on using the computer to recognize human faces. Since then, facial recognition software has come a long way.

Identix®, a company based in Minnesota, is one of many developers of facial recognition technology. Its software, FaceIt®, can pick someone's face out of a crowd, extract the face from the rest of the scene and compare it to a database of stored images. In order for this software to work, it has to know how to differentiate between a basic face and the rest of the background. Facial recognition software is based on the ability to recognize a face and then measure the various features of the face.

Every face has numerous, distinguishable landmarks, the different peaks and valleys that make up facial features. FaceIt defines these landmarks as nodal points. Each human face has approximately 80 nodal points. Some of these measured by the software are:

· Distance between the eyes

· Width of the nose

· Depth of the eye sockets

· The shape of the cheekbones

· The length of the jaw line

These nodal points are measured creating a numerical code, called a faceprint, representing the face in the database.

Photo © Identix Inc.Face It software compares the faceprint with other images in the database.

In the past, facial recognition software has relied on a 2D image to compare or identify another 2D image from the database. To be effective and accurate, the image captured needed to be of a face that was looking almost directly at the camera, with little variance of light or facial expression from the image in the database. This created quite a problem.

In most instances the images were not taken in a controlled environment. Even the smallest changes in light or orientation could reduce the effectiveness of the system, so they couldn't be matched to any face in the database, leading to a high rate of failure. In the next section, we will look at ways to correct the problem.

D Facial Recognition

Photo © A4Vision, Inc. The Vision 3D + 2D ICAO camera is used to perform enrollment, verification and identification of 3D and 2D face images.

A newly-emerging trend in facial recognition software uses a 3D model, which claims to provide more accuracy. Capturing a real-time 3D image of a person's facial surface, 3D facial recognition uses distinctive features of the face -- where rigid tissue and bone is most apparent, such as the curves of the eye socket, nose and chin -- to identify the subject. These areas are all unique and don't change over time.

Using depth and an axis of measurement that is not affected by lighting, 3D facial recognition can even be used in darkness and has the ability to recognize a subject at different view angles with the potential to recognize up to 90 degrees (a face in profile).

Using the 3D software, the system goes through a series of steps to verify the identity of an individual.

Detection
Acquiring an image can be accomplished by digitally scanning an existing photograph (2D) or by using a video image to acquire a live picture of a subject (3D).

Alignment
Once it detects a face, the system determines the head's position, size and pose. As stated earlier, the subject has the potential to be recognized up to 90 degrees, while with 2D, the head must be turned at least 35 degrees toward the camera.

Measurement
The system then measures the curves of the face on a sub-millimeter (or microwave) scale and creates a template.

Representation
The system translates the template into a unique code. This coding gives each template a set of numbers to represent the features on a subject's face.

Matching
If the image is 3D and the database contains 3D images, then matching will take place without any changes being made to the image. However, there is a challenge currently facing databases that are still in 2D images. 3D provides a live, moving variable subject being compared to a flat, stable image. New technology is addressing this challenge. When a 3D image is taken, different points (usually three) are identified. For example, the outside of the eye, the inside of the eye and the tip of the nose will be pulled out and measured. Once those measurements are in place, an algorithm (a step-by-step procedure) will be applied to the image to convert it to a 2D image. After conversion, the software will then compare the image with the 2D images in the database to find a potential match.







Последнее изменение этой страницы: 2016-08-16; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.233.239.102 (0.004 с.)