Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теория предельного напряженного состояния грунтов и ееСодержание книги
Поиск на нашем сайте
Приложения
Определение начального критического давления и расчетного Сопротивления основания
Рассмотрим ленточный фундамент с глубиной заложения d на однородном основании с характеристиками γ, φ, с. Считаем, что по подошве фундамента действует давление р = Fv/A, а с боков пригрузка γ·d за счет веса грунта в пределах глубины заложения. Используя формулу (3.4) и учитывая напряжения от веса грунта при ξ=1, получим следующие формулы для главных напряжений в т. М. (рис. 4.1) . (4.1) Подставив (4.1) в УПР (2.16), получаем выражение, связывающее нагрузку р с координатами рассматриваемой т. М β, z, глубиной заложения d, характеристиками грунта γ, φ, с, т.е. (4.2)
Если в т. М выполняется УПР, то площадки сдвига совпадут с лучами из точки к краям подошвы и тогда , так что по (4.2) р будет зависеть только от z – максимальной глубины развития областей сдвига. Первое критическое давление получим, если примем z = 0 (области сдвига полностью отсутствуют). Это решение впервые было получено профессором Пузыревским Н.П. Формулу можно представить в виде: Р1кр = Мq ·γ·d +Mc ·C, (4.3) где Мq и Mc – функции угла внутреннего трения, определяемые соотношениями: (4.4) Применение формулы (4.3) приводит к надежным, но не экономичным решениям; практикой доказано, что без ущерба для надежности можно допустить работу основания в начале стадии сдвигов (см. рис. 2.1), когда зависимость s = f(р) еще близка к линейной. Наибольшее применение получила формула, получаемая на основе (4.2), в которой принимается z = 0,25b. При этом (4.3) обобщается на учет ширины подошвы: Рнач. =Мγ ·γ ·d+Mq ·γ ·d+Mc ·C, (4.5) где , а коэффициенты Mq, Mc по (4.4). В нормах проектирования Рнач. называется расчетным сопротивлением основания Рнач.= R. Формула (4.5) обобщена с учетом следующих факторов: – вид грунта и достоверность определения его характеристик; – жесткость сооружения; – возможность разной глубины заложения c двух сторон фундамента; – разброс значений характеристик.
Основы теории предельного напряженного состояния (ТПНС) и определение второй критической (предельной) нагрузки
При значительном развитии областей сдвигов, когда грунт близок к разрушению, использование уравнений ТЛДС (4.1) уже невозможно. Здесь необходимо использовать более общие соотношения – дифференциальные уравнения равновесия грунта в точке. Для условий плоской задачи, используя схему и обозначения на рис. 4.2 и приравнивая нулю суммы проекций на координатные оси, получаем: (4.6) К уравнениям (4.6) присоединяется условие предельного равновесия (2.16), которое следует записать, как и (4.6), через компоненты σx, σz, τ: . (4.7)
Уравнения (4.6) и (4.7) составляют систему уравнений ТПНС для условий плоской задачи. Отыскание напряжений, удовлетворяющих уравнениям (4.6, 4.7), позволяет находить предельную нагрузку на основание, устанавливать устойчивость откосов, определять давление грунта на подпорные стены и т.п. Весь этот круг задач составляет область приложения ТПНС. Задачи ТПНС решаются различными методами: аналитически, с помощью приближенных инженерных приемов и численными методами с преобразованием системы (4.6, 4.7) и заменой производных конечными разностями. Соответствующие решения получены Соколовским В.В., Березанцевым В.Г. и др. Формулы для определения второго критического давления приводятся обычно к трехчленной форме, как и (4.5). На основе анализа и обобщения решений ТПНС с учетом опытных данных в нормах проектирования принята следующая формула для предельного давления на основание внецентренно нагруженного фундамента произвольной формы: , (4.8) где Nγ, Nq, Nc – коэффициенты несущей способности, определяемые по табл. 4.1 в зависимости от расчетного значения φI и угла наклона равнодействующей нагрузки к вертикали δ; γI и γ΄I – расчетные значения удельного веса грунта под подошвой в пределах глубины заложения фундамента d; ξγ, ξq, ξc – коэффициенты формы подошвы фундамента (для ленточного фундамента ξγ=ξq=ξc=1); b΄ – приведенная ширина подошвы фундамента. Таблица 4.1
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 983; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.17.3 (0.007 с.) |