Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общий вывод по разделу «корреляционный анализ»Содержание книги Поиск на нашем сайте
По данным таблицы 1.1 мы построили интервальные и дискретные ряды. При помощи таблицы 1.2. сделали вывод, что ряд распределения по выработке на 1 рабочего показывает, что наиболее характерным является группа с центральным значением интервала 6133,2, 6582,8, 6807,6 тыс. руб., так как они составляют 18,18 % от всего количества выработки на 1 рабочего. Ряд распределения по уровню сборности показывает, что наиболее характерным является группа с центральным значением интервала 61,9, так как составляет 27,27%. Затем мы строим корреляционную таблицу, которая показывает, что при переходе слева направо в сторону больших значений факторного признака х соответствующие ряды распределения функционального признака у смещаются сверху вниз, т.е. в сторону меньших значений функций. Следовательно, выработка на 1 рабочего в год находится в корреляционной зависимости от уровня сборности Далее считаем эмпирическую линию регрессии. После всех расчетов можно было сделать вывод о том, что расчет эмпирической линии регрессии вновь подтвердил наличие корреляционной зависимости между выработкой на 1 рабочего и уровнем сборности. При расчете теоретической линии регрессии из уравнения теоретической линии регрессии видно, что выработка на 1 рабочего увеличивается на 17,79% при увеличении численности на 1 %. Уровень сборности, не зависящая от рассматриваемых факторов равна 5290,54 Затем просчитываем коэффициент корреляции, который помогает определить тесноту связи между результативным и факторным признаком и сделали вывод, что выполненные расчеты показывают, что между выработкой на 1 рабочего в год и объемом работ собственными силами существует положительная корреляция, которая говорит о том, что с увеличением факторного признака х функциональный признак у увеличивается. Знак при коэффициенте корреляции совпадает со знаком регрессии а1, что свидетельствует о правильности произведенных вычислений. Случайные факторы оказывают большое влияние на функцию, т.к. r=0,16, следовательно, имеем слабую связь между изучаемыми явлениями. В заключении, мы выяснили при помощи расчета коэффициента детерминации, что имеется кое какое отклонение, однако оно не существенно и доказали это утверждение нахождением показателя t.
Определение показателей вариации Вариация- это различия в значении какого-либо признака у разных единиц изучаемой совокупности в один и тот же момент времени. Из исходных данных, которые мы взяли из первого раздела (корреляционный анализ) выделить три группы по результативному признаку у: Исходные данные: Таблица 2.1.
Таблица 2.2.
Для каждой группы просчитаем ȳi= . По данной формуле определим средние значения результативного признака для каждой из данных групп и запишем их в таблицу. В статистике очень часто используется показатель, который называется дисперсия, представляющая собой среднеквадратическое отклонение индивидуальных значений признака от средней величины. Дисперсия – неименованная величина, т.е. она не имеет единиц измерения. Она рассчитывается как для сгруппированных данных, когда имеет частота признака f, так и для не сгруппированных данных.
Вычисление групповой дисперсии Групповая дисперсия отражает случайную вариацию, обусловленную влиянием неучтенных факторов и независящую от признака фактора положенного в основание группировки. Она рассчитывается как для сгруппированных, когда имеет частоту признака, так и для не сгруппированных данных. Для сгруппированных данных: σi2= σi2= где: yi – значение признака; ȳi – среднее значение в выборке; n - число наблюдений в выборке; f – частоты признака В данном случае вычисляем групповую дисперсию по формуле для не сгруппированных данных, т.к. у нас не имеется частоты признака f. Подставив данные в таблице 2.2., найдем дисперсию каждой из трех групп: σ12 = =95393 σ22 = =41474 σ32 = =145161 Вывод: групповые дисперсии, вычисленные по трем группам, отражают действие всех факторов влияющих на величину выработки на 1 рабочего.
|
|||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 682; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.23.59 (0.008 с.) |