Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Расчет теоретической линии регрессииСодержание книги Поиск на нашем сайте
Теоретическая линия регрессии представляет собой такую математически правильную кривую (либо прямую) линию, которая проходит наиболее близко к точкам эмпирической линии регрессии, выражает общую закономерность средних изменений признака в связи со средними изменениями фактора. В нашем случае характер размещения точек на корреляционном поле делает весьма вероятной гипотезу о линейной связи у от х: у = a0 + a1x. Параметры уравнения найдем из системы по способу наименьших квадратов: naꞌ0 + aꞌ1∑ xꞌ = ∑ yꞌ aꞌ0∑xꞌ + aꞌ1∑(xꞌ)2 = ∑ xꞌyꞌ Исходную информацию для решения данной системы получаем из таблицы 1.7., которая основана на результатах таблицы 1.6. Примем условный нуль в пятом интервале по оси Ох, тогдаС =61,9%; i = 1,46 %.
Таблица 1.7.
В качестве проверки правильности данной таблицы должно соблюдаться равенство итогов четвертой строки и второго столбца. Если это условие не соблюдается, то в расчетах допущена ошибка, которая может привести к существенным искажениям величины параметров теоретической линии регрессии. В систему уравнений, данную выше, и получим: 11*a0’-12*a1’= -1 -12*a0’+148*a1’=-17 В качестве метода решения системы принимаем метод Гаусса, который позволяет находить решение последовательно, исключая неизвестные. Для этого первое уравнение умножаем на -12, а второе на 11 и вычтем: -1772*а1’=-199 a1’=0.11 Затем в первое уравнение системы подставим значение a1’ и находим величину a0’: 11*a0’-12*0.11= -1
a0’=0.03 Параметры a0’и a1’ необходимо преобразовать исходя из фактических значений х и у. Формулы перевода из упрощенных в реальные координаты: a1=a1’* a0=cy+iya0’-a1’* *cx где iy- интервал группировки по функции ix- интервал группировки по аргументу cy-новое начало отсчета по функции cx-новое начало отсчета по аргументу По этим формулам получаем, что a0=5290.54, a1= 17.79 Уравнение теоретической линии регрессии в реальных коэффициентах имеет вид y=5290.54+17.79х. В уравнении регрессии первое слагаемой носит название свободного члена, второе слагаемое называется коэффициентом регрессии. Он показывает, на сколько натуральных единиц изменяется в среднем результативный признак при изменении факторного признака на единицу. В нашем примере из уравнения теоретической линии регрессии видно, что выработка на 1 рабочего повышаются на 17.79 % при увеличении уровня сборности 1 %. Выработка на 1 рабочего, не зависящие от рассматриваемых фактов, равен 5290,54 тыс. руб. Для графического изображения линии регрессии, рассчитанной по линейной гипотезе, достаточно определить две точки, через которые можно провести прямую. В нашем примере по х1=60 и х2=70,у1=6357,94 и у2=6535,84 проводим на поле корреляции прямую линию. Вывод: Графическое изображение теоретической линии регрессии в виде уравнения прямой еще раз подтверждает наличие корреляционной связи между изучаемыми признаками.
Измерение тесноты связи Коэффициент корреляции ry/x является одним из наиболее совершенных методов измерения тесноты связи. Коэффициент корреляции отвечает на вопрос, в какой мере соблюдается строгая пропорциональность в изменениях функционального и факториального признаков. Коэффициент корреляции может принимать как положительные, так и отрицательные значения, т.е. -1≤r≤1. При выполнении корреляционных расчетов, когда связь между признаками х и у выражается прямой линией, соблюдается условие, при котором знак при коэффициенте корреляции ry/x должен совпадать со знаком при коэффициенте регрессии а1. Для расчета коэффициента корреляции существует формула, представленная в упрощенных координатах признаков х и у. ry/x= В нашем случае исходную информацию для нахождения ry/x принимаем из таблицы 1.7. ry/x= = 0,16 Вывод: выполненные расчеты показывают, что между выработкой на 1 рабочего и уровнем сборности существует положительная корреляция, которая говорит о том, что с увеличением факторного признака х функциональный признак у увеличивается. Знак при коэффициенте корреляции совпадает со знаком регрессии а1, что свидетельствует о правильности произведенных вычислений. Имеем слабую связь между изучаемыми явлениями.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 380; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.86.143 (0.009 с.) |