Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Предмет топографии и геодезии. Связь топографии и геодезии с другими науками↑ Стр 1 из 5Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Предмет топографии и геодезии. Связь топографии и геодезии с другими науками Слово «геодезия» образовано из греческих слов «ge» - земля и «dazomai» - разделяю, делю на части; если перевести его дословно, то получится «землеразделение». Это название соответствовало содержанию геодезии во времена ее зарождения и начального развития. Так, в Египте задолго до нашей эры измерялись размеры земельных участков, строились оросительные системы; все это выполнялось с участием геодезистов. Усложнение и развитие геодезии привело к разделению ее на несколько научных дисциплин. Высшая геодезия изучает фигуру Земли, ее раз меры и гравитацонное поле, обеспечивает распространение принятых систем координат в пределах государства, континента или всей поверхности Земли, занимается исследованием древних и современных движений земной коры, а также изучает фигуру, размеры и гравитационное поле других планет Солнеч ной системы. Топография («топос» - место, «графо» - пишу; дословно - описание местности) изучает методы топографической съемки мест ности с целью изображения ее на планах и картах. Картография изучает методы и процессы создания и использования карт, планов, атласов и другой картографической продукции. Фотограмметрия (фототопография и аэрофототопо графия) изучает методы создания карт и планов по фото- и аэрофотоснимкам. Инженерная геодезия изучает методы и средства проведения геодезических работ при изысканиях, проектировании, строительст ве и эксплуатации различных инженерных сооружений. Маркшейдерия (подземная геодезия) изучает методы проведения геодезических работ в подземных горных выработках. Понятно, что четко обозначенных границ между перечисленными дисциплинами нет. Так, топография включает в себя элементы высшей геодезии и картографии, инженерная геодезия использует разделы практически всех остальных геодезических дисциплин и т.д. Уже из этого неполного перечня геодезических дисциплин видно, какие разнообразные задачи - и теоретического, и практического характера, - приходится решать геодезистам, чтобы удовлетворить требования государственных и частных учреждений, компаний и фирм. Для государственного планирования и развития производительных сил страны необходимо изучать ее территорию в топографическом отношении. Топографические карта и планы, создаваемые геодезистами, нужны всем, кто работает или передвигается по Земле: геологам, морякам, летчикам, проектировщикам, строителям, земледельцам, лесоводам, туристам, школьникам и т.д. Особенно нужны карты армии: строительство оборонительных сооружений, стрельба по невидимым целям, использование ракетной техники, планирование военных операций, - все это без карт и других геодезических материалов просто невозможно. Геодезия занимается изучением Земли в содружестве с другими «геонауками», то есть, науками о Земле. Физические свойства Земли в целом изучает наука «физика Земли», строение верхней оболочки нашей планеты изучают геология и геофизика, строение и характеристики океанов и морей - гидрология, океанография. Атмосфера - воздушная оболочка Земли - и процессы, происходящие в ней, являются предметом изучения метеорологии и климатологии. Растительный мир изучает геоботаника, животный мир - зоология. Кроме этого, есть еще география, геоморфология и другие. Среди всех наук о Земле геодезия занимает свое место: она изучает геометрию Земли в целом и отдельных участков ее поверхности, а также геометрию любых объектов (и естественного, и искусственного происхождения) на поверхности Земли и вблизи нее. Геодезия, как и другие науки, постоянно впитывает в себя достижения математики, физики, астрономии, радиоэлектроники, автоматики и других фундаментальных и прикладных наук. Изобретение лазера привело к появлению лазерных геодезических приборов - лазерных нивелиров и светодальномеров; кодовые измерительные приборы с автоматической фиксацией отсчетов могли появиться только на определенном уровне развития микроэлектроники и автоматики. Что же касается информатики, то ее достижения вызвали в геодезии подлинную революцию, которая происходит сейчас на наших глазах. В последние годы строительство так называемых уникальных инженерных сооружений потребовало от геодезии резкого повышения точности измерений. Так, при монтаже оборудования мощных ускорителей прихо дится учитывать десятые и даже сотые доли миллиметра. По результатам геодезических измерений изучают деформации и осадки действующего промышленного оборудования, обнаруживают движение земной коры в сейсмоактивных зонах, наблюдают за уровнями воды в реках, морях и океанах и уровнем грунтовых вод. Возможность использования искусственных спутников Земли для решения геодезических задач привела к появлению новых разделов геодезии - космической геодезии и геодезии планет. Подтверждаются слова К.Э. Циолковского: «Земля - колыбель человечества, но нельзя вечно жить в колыбели».
Искажения за кривизну Земли при проецировании поверхности Земли на плоскость Искажение расстояний Небольшой участок сферической поверхности при определенных условиях можно принять за плоскость. Применение модели плоской поверхности при решении геодезических задач возможно лишь для небольших участков поверхности Земли, когда искажения, вызванные заменой поверхности сферы или эллипсоида плоскостью невелики и могут быть вычислены по простым формулам. Это тем более оправдано, если учесть, что измерения на местности и чертежные работы всегда выполняются с ошибками, а потому небольшую часть сферы (эллипсоида), отличающуюся от плоскости на величину, меньшую ошибок измерений, можно считать плоской.
План и карта Географическая карта – уменьшенное, обобщённое изображение земной поверхности на плоскости, построенное по определённому математическому закону в принятой системе обозначений. Картографическое изображение, построенное без учёта кривизны поверхности Земли, называют планом. Все карты делят на: топографические (общегеографические), тематические, специальные (технические) Задачи общегеографической карты: научный анализ закономерностей размещения, взаимодействия и прогноза развития природных явлений; территориальная организация общества; проведение экспедиционных работ (ориентирование на местности); составление тематических карт самого различного содержания. Чем меньше знаменатель численного масштаба, тем крупнее масштаб. Планы составляют в крупных масштабах, а карты — в мелких. В картах учитывается «шарообразность» земли, а в планах — нет. Из-за этого планы не должны составляться для территорий площадью свыше 400 км² (то есть участков земли примерно 20×20 км) Уменьшенное изображение на бумаге горизонтальной проекции небольшого участка местности называется планом. На плане местность изображается без заметных искажений, так как небольшой участок поверхности относимости можно принять за плоскость. Если участок поверхности относимости, на который спроектирована местность, имеет большие размеры, то при изображении его на плоскости неизбежны заметные искажения длин линий, углов, площадей. Просто развернуть на плоскость участок сферы или эллипсоида без разрывов и складок нельзя, поэтому приходится прибегать к помощи математики. Математически определенный способ изображения поверхности сферы или эллипсоида на плоскости называется картографической проекцией; каждой точке Mo (φ, λ или B, L) изображаемой поверхности соответствует одна точка M (x, y) плоскости. Аналитически картографическая проекция задается двумя уравнениями x = f1(φ, λ), y = f2(φ, λ), где f1 и f2 - функции независимые, непрерывные, однозначные и конечные. Картографические проекции классифицируются по: характеру искажений (равноугольные, равновеликие и произвольные), виду сетки меридианов и параллелей (азимутальные, цилиндрические, псевдоцилиндрические, конические, псевдоконические, поликонические), положению полюса сферических координат (нормальные, поперечные, косые). Картой называется уменьшенное изображение на бумаге горизонтальной проекции участка земной поверхности в принятой картографической проекции, то-есть, с учетом кривизны поверхности относимости. В нашей стране топографические карты составляются в поперечно-цилиндрической равноугольной проекции Гаусса. Масштабом карты (плана) называется отношение длины отрезка на карте (плане) к горизонтальной проекции соответствующего отрезка на местности. По своему назначению все географические карты делятся на общегеографические и тематические. На общегеографических картах показывают рельеф, гидрографию, растительный покров, населенные пункты, пути сообщения, различные границы и другие объекты природного, хозяйственного и культурного назначения. На тематических картах изображают размещение, сочетание и связи различных природных и общественных явлений; известны геологические, климатические, ландшафтные, экологические карты, карты полезных ископаемых, карты размещения производительных сил, карты населения, исторические, учебные, туристические и др. Крупномасштабные (масштаба 1:1 000 000 и крупнее) общегеографические карты называются топографическими. Они издаются в виде отдельных листов размером примерно 40 см x 40 см.
Свойства карты При всем поразительном разнообразии существующих карт большинству из них присущи некоторые общие черты. Даже контурные карты, максимально разгруженные для того, чтобы учащиеся могли наносить на них дополнительную информацию по своему выбору, обычно имеют градусную сетку координат, масштаб и элементы основы (например, береговые линии). Кроме того, на карты обычно нанесены надписи и условные знаки, и к ним прилагается легенда. Сетка координат представляет собой систему взаимно пересекающихся линий, обозначающую на карте или поверхности глобуса широту и долготу. Линии, обозначающие широту, проходят в направлении восток – запад параллельно экватору (широта которого равна 0°); широта полюсов считается равной 90° (северной широты для Северного полюса и южной – для Южного). Поскольку эти линии не пересекаются и взаимно параллельны, они также называются параллелями. Из них только экватор представляет собой самый большой круг (ограниченная этой линией плоскость, проходящая через центр Земли, рассекает земной шар пополам). Остальные параллели – это окружности, длина которых закономерно убывает с удалением от экватора. Все линии долготы – меридианы – представляют собой половинки большого круга, сходящиеся у полюсов. Меридианы проходят в направлении север – юг, от полюса до полюса; по ним отсчитывается угловое расстояние от начального меридиана, обозначаемого как 0° долготы, на восток и на запад до 180° (при этом долготы, которые отсчитываются в восточном направлении, обозначаются буквами «в.д.», а в западном – «з.д.»). В отличие от экватора, равноудаленного от полюсов на всем протяжении и являющегося в этом смысле «естественной» точкой отсчета при определении широты, начальный меридиан, от которого ведется отсчет долготы, выбирается произвольно. В соответствии с международным соглашением за начало координат (0° долготы) принят меридиан Гринвичской астрономической обсерватории (сейчас она находится на территории Лондона). Однако до того, как было достигнуто это соглашение, некоторые картографы использовали в качестве начальных меридианы Канарских или Азорских о-вов, Парижа, Филадельфии, Рима, Токио, Пулкова и пр. На поверхности глобуса линии параллелей и меридианов пересекаются под углом 90°; что касается карт, то на них такое соотношение сохраняется лишь в некоторых случаях. Как на картах, так и на глобусах обычно наносится определенная система меридианов и параллелей (проведенных через 5°, 10°, 15° или 30°). В дополнение к этому на картах и на глобусах показывают Северный тропик, или тропик Рака (231/2° с.ш.), Южный тропик, или тропик Козерога (231/2° ю.ш.), Северный полярный круг (661/2° с.ш.) и Южный полярный круг (661/2° ю.ш.). Часто на карты наносится также международная Линия перемены даты, которая в основном совпадает со 180° долготы. Требования предъявляемые к картам и планам. 1. Точность - это соответствие местоположения очертания и размеров объектов ситуаций рельефа их действительным размерам на местности. 2. Полнота – это возможная подробность и детальное изображение объектов и сведений не затрудняющее чтение карты. 3. Достоверность – соответствие и правдоподобие сведений действительности изображенной на карте. 4. Наглядность – свойства передачи для зрительного восприятия, её характерные черты и особенности.
Классификация карт Карты подразделяются на группы по ряду признаков – масштабу, тематике, территориальному охвату, проекции и т.д. Простые охватывают карты поверхности земли, полушарий, материков, по масштабу – крупномасштабные (1/100000 и кр.) среднемасштабные (1/200000,1/500 тыс 1/1 млн) мелкомасштабные (1/1 млн и бл). По содержанию – общегеографические - отображаются совокупность всех элементов местности. Тематические - основы создания которой является отображаемая конкретная тема. Топографические карты и планы – назначение – научно-справочные учебные, морская навигация, дорожные, кадастровые, туристские. Топографические карты и планы имеют многоцелевое назначение, поэтому элементы местности на них показываются с одинаковой подробностью. Крупномасштабные карты являются основными, поскольку предоставляют первичную информацию, используемую при составлении карт средних и мелких масштабов. Наиболее обычными из них являются топографические карты масштаба крупнее 1:250 000. На современных топографических картах рельеф обычно показывается при помощи изогипс, или горизонталей, которыми соединяются точки, имеющие одинаковую высоту над нулевым уровнем (обычно это уровень моря). Совокупность таких линий дает очень выразительную картину рельефа земной поверхности и позволяет определить следующие характеристики: угол наклона, профиль склона и относительные превышения. Помимо изображения рельефа топографические карты содержат и другую полезную информацию. Обычно на них показывают транспортные магистрали, населенные пункты, политические и административные границы. Набор дополнительной информации (например, распространение лесов, болот, незакрепленные песчаные массивы и пр.) зависит от назначения карт и характерных черт местности. Как крупномасштабные топографические, так и среднемасштабные карты обычно выпускаются комплектами, каждый из которых отвечает определенным требованиям. Большинство среднемасштабных издается для нужд регионального планирования или навигации. Наибольшим территориальным охватом отличаются среднемасштабные Международная карта мира и аэронавигационные карты США. Оба комплекта карт выпускаются в масштабе 1:1 000 000 – наиболее распространенном для среднемасштабных карт. При подготовке Международной карты мира каждая страна на свою территорию выпускает карты, подготовленные в соответствии с заданными общими требованиями. Эта работа координируется ООН, однако многие карты уже устарели, а другие еще не завершены. Содержание Международной карты мира в основном соответствует содержанию топографических карт, но отличается большей генерализацией. То же самое относится и к аэронавигационным картам мира, но на большинство листов этих карт нанесена дополнительная специальная нагрузка. Аэронавигационные карты покрывают всю сушу. В среднем масштабе составляются также некоторые морские или гидрографические карты, на которых особое внимание уделяется изображению водоемов и береговой линии. Некоторые административные и дорожные карты также имеют средний масштаб. Мелкомасштабные, или обзорные, карты. На картах мелкого масштаба показывается вся поверхность земного шара или значительная ее часть. Трудно точно обозначить границу между мелко- и среднемасштабными картами, однако масштаб 1:10 000 000 определенно относится к обзорным картам. Большинство карт атласов имеет мелкий масштаб, причем тематически они могут быть очень разными. Почти все выше обозначенные группы объектов могут быть отражены и на мелкомасштабных картах при условии достаточной генерализации информации. Кроме того, в мелком масштабе составляются карты распространения различных языков, религий, сельскохозяйственных культур, климатические и т.д. В качестве наглядного примера специальных мелкомасштабных карт, хорошо знакомых миллионам людей, можно указать карты погоды. Мультипликационные и компьютерные карты. Для мультипликационных карт, которые можно проецировать на телеэкран, вводится четвертая координата – время, позволяющая проследить динамику картографируемого объекта. Компьютерная картография достигла сейчас такой ступени развития, что практически все операции могут выполняться в цифровой форме. В результате существенно облегчается внесение всевозможных исправлений и уточнений. Этот метод создания карт любых типов и масштабов, включая карты-мультипликации, обозначается специальным термином «географические информационные системы» (ГИС).
Способы изображения рельефа Основные формы рельефа. Несмотря на большое разнообразие неровностей земной поверхности, можно выделить основные формы рельефа: гора, котловина, хребет, лощина, седловина. Существуют разновидности перечисленных основных форм, например, разновидности лощины: долина, овраг, каньон, промоина, балка и т.д. Иногда разновидности основных форм характеризуют особенности рельефа конкретного участка местности, например, в горах бывают пики - остроконечные вершины гор, ущелья, теснины, щеки, плато, перевалы и т.д. Вершина горы, дно котловины, точка седловины являются характерными точками рельефа; линия водораздела хребта, линия водослива лощины, линия подошвы горы или хребта, линия бровки котловины или лощины являются характерными линиями рельефа. Способы изображения рельефа. Способ изображения рельефа должен обеспечивать хорошее пространственное представление о рельефе местности, надежное определение направлений и крутизны скатов и отметок отдельных точек, решение различных инженерных задач. За время существования геодезии было разработано несколько способов изображения рельефа на топографических картах. Перечислим некоторые из них. Перспективный способ. Способ отмывки. Этот способ применяется на мелкомасштабных картах. Поверхность Земли показывается коричневым цветом: чем больше отметки, тем гуще цвет. Глубины моря показывают голубым или зеленым цветом: чем больше глубина, тем гуще цвет. Способ штриховки. Способ отметок. При этом способе на карте подписывают отметки отдельных точек местности. Способ горизонталей. В настоящее время на топографических картах применяют способ горизонталей в сочетании со способом отметок, причем на одном квадратном дециметре карты подписывают, как правило, не менее пяти отметок точек. Триангуляция Понятие о триангуляции Триангуляция представляет собой группу примыкающих один к другому треугольников, в которых измеряют все три угла; два или более пунктов имеют известные координаты, координаты остальных пунктов подлежат определению. Группа треугольников образует либо сплошную сеть, либо цепочку треугольников. Координаты пунктов триангуляции как правило вычисляют на ЭВМ по программам, реализующим алгоритмы строгого уравнивания по МНК. На стадии предварительной обработки триангуляции последовательно решают треугольники один за другим. В нашем курсе геодезии мы рассмотрим решение лишь одного треугольника. 27. Полигонометрия (от греч. polýgonos – многоугольный) – один из методов определения взаимного положения точек земной поверхности для построения опорной геодезической сети служащей основой топографических съёмок, планировки и строительства городов, перенесения проектов инженерных сооружений в натуру и т.п. Положения пунктов в принятой системе координат определяют методом полигонометрии путём измерения на местности длин линий, последовательно соединяющих эти пункты и образующих полигонометрический ход, и горизонтальных углов между ними. Полигонометрия состоит из одного или нескольких ходов, в которых измеряют с высокой точностью все углы и стороны. Эти ходы прокладываются обычно между пунктами триангуляции. В полигонометрических ходах измеряются все углы поворота и длины всех сторон. Горизонтальные углы измеряют с ошибкой от 0.4» до 10», а относительная ошибка измерения расстояний mS/S бывает от 1/5000 до 1/300 000. По точности измерений полигонометрические ходы делятся на два разряда и четыре класса. Положения пунктов в принятой системе координат определяют методом П. путём измерения на местности длин линий, последовательно соединяющих эти пункты и образующих полигонометрический ход, и горизонтальных углов между ними. Так, выбрав на местности точки 1, 2, 3, …, n, n + 1 измеряют длины s1, s2,..., sn. Линий между ними и углы b2, b3,..., bn между этими линиями (рис. 1). Полигонометрический ход Как правило, начальную точку 1 полигонометрического хода совмещают с опорным пунктом Рн, который уже имеет известные координаты хн, ун и в котором известен также исходный дирекционный угол aн направления на какую-нибудь смежную точку Р'н. В начальной точке полигонометрического хода, т. е. в пункте Рн, измеряют также примычный угол b1 между первой стороной хода и исходным направлением РнР’н. Тогда дирекционный угол ai стороны i и координаты xi+1, yi+1 пункта i + 1 полигонометрического хода могут быть вычислены по формулам: ai = aн + åir=1br - i 180° xi+1 = хн + åir=1srcosar yi+1 = ун + åir=1srsinar. Для контроля и оценки точности измерений в полигонометрическом ходе его конечную точку n + 1 совмещают с опорным же пунктом Pk, координаты xk, yk которого известны и в котором известен также дирекционный угол ak направления на смежную точку P'k. Это даёт возможность вычислить т. н. угловую и координатные невязки в полигонометрическом ходе, зависящие от погрешностей измерения длин линий и углов и выражающиеся формулами: fa = an+1 - ak, fx = xn+1 - xk, fy = yn+1 - yk. Эти невязки устраняют путём исправления измеренных углов и длин сторон поправками, которые определяют из уравнительных вычислений по способу наименьших квадратов.
Трилатерация Трилатерация (от лат. trilaterus — трёхсторонний, от tri-, в сложных словах — три и latus, родительный падеж lateris — сторона), метод определения опорных геодезических пунктов, заключающийся в построении на местности цепи или сети последовательно связанных между собой треугольников и измерении в каждом из них всех трёх сторон. Углы этих треугольников и координаты их вершин определяют из тригонометрических вычислений. Стороны треугольников измеряют радиодальномерами или электрооптическими дальномерами. Т. имеет то же назначение, что и триангуляция. Трилатерация представляет собой сплошную сеть примыкающих один к другому треугольников, в которых измеряют длины всех сторон; два пункта, как минимум, должны иметь известные координаты (рис.2.25). Решение первого треугольника трилатерации, в котором известны координаты двух пунктов и измерены две стороны, можно выполнить по формулам линейной засечки, причем нужно указывать справа или слева от опорной линии AB располагается пункт 1. Во втором треугольнике также оказываются известными координаты двух пунктов и длины двух сторон; его решение тоже выполняется по формулам линейной засечки и так далее. Рис.2.25. Схема сплошной сети трилатерации Можно поступить и по-другому: сначала вычислить углы первого треугольника по теореме косинусов, затем, используя эти углы и дирекционный угол стороны AB, вычислить дирекционные углы сторон A1 и B1 и решить прямую геодезическую задачу от пункта A на пункт 1 и от пункта B на пункт 1. Таким образом, в каждом отдельном треугольнике «чистой» трилатерации нет избыточных измерений и нет возможности выполнить контроль измерений, уравнивание и оценку точности; на практике кроме сторон треугольников приходится измерять некоторые дополнительные элементы и строить сеть так, чтобы в ней возникали геометрические условия. Уравнивание сплошных сетей трилатерации выполняется на ЭВМ по программам, в которых реализованы алгоритмы МНК. 29. Космические методы определения координат Координаты наземных пунктов методами космической геодезии можно определить по двум направлениям. Первое направление основано на использовании законов движения спутников и включает группу методов для совместного определения геофизических параметров параметров Земли и координат наземных пунктов. Методы, принимаемые при этом, называют динамическими. Содержание второго направления составляет построение пространственных геодезических сетей с помощью синхронных (одновременных) или квазисинхронных (почти одновременных) наблюдений ИСЗ. Космическая геодезия - раздел геодезии, в котором изучаются методы определения взаимного положения точек на земной поверхности, размеров и фигуры Земли, параметров ее гравитационного поля на основе наблюдений солнечных затмений и покрытий звезд Луной, а также наблюдений искусственных спутников Земли и аэростатов (баллонов) с импульсными источниками света, поднимаемых на высоту 20-30 км. Космическая геодезия рассматривает теорию и методы решения научных и практических задач на земной поверхности по наблюдениям небесных тел (Луна, Солнце, ИСЗ) и по наблюдениям Земли из космоса. Космическая геодезия включает в себя глобальные навигационные системы, являющиеся основой применяемых в настоящее время координатных систем, и системы космического дистанционного зондирования многоцелевого назначения, используемые для мониторинга поверхности Земли. Одним из основных методов решения геометрических задач К. г. является одновременное (синхронное) наблюдение космического объекта (Луны, ИСЗ) из нескольких пунктов на земной поверхности. Если в некоторой системе координат, связанной с Землёй, известны положения двух (или более) из числа этих пунктов, то путём математического решения пространственных треугольников с одной из вершин в точке нахождения космического объекта можно вычислить положения также и др. пунктов, из которых проводились наблюдения. Такой метод установления геодезической связи между пунктами на земной поверхности называется космической (спутниковой) триангуляцией. В случае одновременных позиционных и дальномерных (выполняемых с помощью радиотехнических средств или спутниковыми лазерными дальномерами) наблюдений ИСЗ геодезические связи могут быть осуществлены и при одном пункте с известным положением методом геодезического векторного хода. В описанных методах К. г. космический объект лишь обозначает точку, фиксированную в пространстве в некоторый момент времени. К орбитальным методам К. г. относят способы установления геодезической связи между пунктами, предусматривающие определение положения ИСЗ в пространстве с помощью законов его движения в гравитационном поле Земли; применение этого метода освобождает от необходимости проведения наблюдений во всех пунктах в один и тот же момент времени. К динамическим задачам К. г. относят определение параметров гравитационного поля Земли путём исследования изменений некоторых элементов орбит ИСЗ, вычисляемых по результатам систематических позиционных и дальномерных наблюдений ИСЗ. Астрономические методы ориентировки (определение географических координат и азимутов направлений), несмотря на развитие других методов и наличие различных приборов, используемых для этой цели, до сих пор являются наиболее надежными методами при далеких плаваниях морских кораблей и дальних перелетах на современных “воздушных кораблях”. Особое значение астрономические способы ориентировки имеют при космических полетах. Поэтому в следующих параграфах мы рассмотрим принципы, лежащие в основе этих методов, и кратко опишем важнейшие инструменты. Определение географической долготы L. Решение этой задачи основано на том, что разность местных времен на двух меридианах в один и тот же момент равна разности долгот этих меридианов, выраженной в часовой мере. В настоящее время географические долготы отсчитываются от гринвичского меридиана, долгота которого принята равной нулю. Следовательно, если Tm - местное время какого-либо меридиана с восточной долготой L от Гринвича, а Т0 - гринвичское время, то L = Tm - T0. (6.5). Таким образом, определение долготы какого-либо пункта сводится к одновременному определению местного времени в данном пункте и местного времени на начальном меридиане. До изобретения радио решение такой задачи представляло значительные трудности. Главная из них заключалась в определении гринвичского времени Т0. Старые методы определения долгот были и приближенными (гринвичское время определялось из наблюдений затмений Луны, покрытий звезд Луной, из наблюдений явлений в системе галилеевых спутников Юпитера) и очень трудоемкими (способ “перевозки хронометров”). Изобретение телеграфа несколько облегчило задачу, но и оно не сняло всех трудностей в этом вопросе. В современных методах определения долгот гринвичское время получается из приема сигналов точного времени по радио. Из приема радиосигналов до и после астрономических наблюдений вычисляется поправка часов u0 и относительно гринвичского меридиана для того же момента, для которого из наблюдений получена поправка часов u0 относительно меридиана данного пункта. Тогда долгота пункта L = u - u0.
30. Спутниковые методы определения координат Наблюдения спутников с помощью специальных спутниковых фотографических камер из пунктов, расположенных далеко друг от друга, из разных странах и даже на разных материках, дают возможность вычислить расстояния между этими пунктами, определить их взаимное положение на земной поверхности. Таким путем можно осуществить, например, геодезическую привязку того или иного острова к сети координат, установленной на материке. Наблюдения, выполняемые в течение многих лег со станций, расположенных на разных материках, позволяют выявлять изменения расстояний между станциями и изучать таким образом закономерности движения материков. Задачи спутниковой геодезии подразделяются на геометрические и динамические. Геометрические задачи решаются на основе одновременных (синхронных) наблюдений спутников с двух или более станций. В результате решения этих задач строятся сети космической триангуляции, подобные сейм триангуляции, создаваемым классическими (наземными) методами. Однако если в наземных сетях стороны треугольников обычно не превышают 20-30 км (расстояния между соседними геодезическими знаками - вышками), то в космической триангуляции они могут достигать нескольких тысяч километров. Наряду с фотографическими камерами в спутниковой геодезии все более широкое применение находят лазерные спутниковые дальномеры, позволяющие с высокой точностью измерять расстояния до спутников. К началу 1990-х годов относится массовое внедрение геоинформационных технологий - научно-технического комплекса, позволяющего формализовать и реализовывать накопление, хранение, обработку и использование пространственно координированных данных с помощью средств географических информационных систем (ГИС). В последние годы ГИС-технологии находят широкое распространение не только в картографии, но и в целом ряде отраслей экономики, а также активно используются в сети Интернет. Научно-технический прорыв последних лет - спутниковые системы позиционирования, ССП (Global Positioning System, GPS, GPS-system) - технологические комплексы, предназначенные для позиционирования объектов на поверхности Земли. GPS-системы позволяют отслеживать координаты (и их изменение) даже быстродвижущихся объектов. Приборы для измерения линий Различают непосредственное измерение расстояний и измерение расстояний с помощью специальных приборов, называемых дальномерами. Непосредственное измерение выполняют инварными проволоками, мерными лентами и рулетками. Инварные проволоки позволяют измерять расстояние с наибольшей точностью; относительная ошибка измерения может достигать одной миллионной; это означает, что расстояние в 1 км измерено с ошибкой всего 1 мм. Инвар - это сплав, содержащий 64% железа и 36% никеля; он отличается малым коэффицентом линейного расширения α = 0.5 ∙ 10-6 (для сравнения: сталь имеет α = 12 ∙ 10-6).
Предмет топографии и геодезии. Связь топографии и геодезии с другими науками Слово «геодезия» образовано из греческих слов «ge» - земля и «dazomai» - разделяю, делю на части; если перевести его дословно, то получится «землеразделение». Это название соответствовало содержанию геодезии во времена ее зарождения и начального развития. Так, в Египте задолго до нашей эры измерялись размеры земельных участков, строились оросительные системы; все это выполнялось с участием геодезистов. Усложнение и развитие геодезии привело к разделению ее на несколько научных дисциплин. Высшая геодезия изучает фигуру Земли, ее раз меры и гравитацонное поле, обеспечивает распространение принятых систем координат в пределах государства, континента или всей поверхности Земли, занимается исследованием древних и современных движений земной коры, а также изучает фигуру, размеры и гравитационное поле других планет Солнеч ной системы. Топография («топос» - место, «графо» - пишу; дословно - описание местности) изучает методы топографической съемки мест ности с целью изображения ее на планах и картах. Картография изучает методы и процессы создания и использования карт, планов, атласов и другой картографической продукции. Фотограмметрия (фототопография и аэрофототопо графия) изучает методы создания карт и планов по фото- и аэрофотоснимкам. Инженерная геодезия изучает методы и средства проведения геодезических работ при изысканиях, проектировании, строительст ве и эксплуатации различных инженерных сооружений. Маркшейдерия (подземная геодезия) изучает методы проведения геодезических работ в подземных горных выработках. Понятно, что четко обозначенных границ между перечисленными дисциплинами нет. Так, топография включает в себя элементы высшей геодезии и картографии, инженерная геодезия использует разделы практически всех остальных геодезических дисциплин и т.д. Уже из этого неполного перечня геодезических дисциплин видно, какие разнообразные задачи - и теоретического, и практического характера, - приходится решать геодезистам, чтобы удовлетворить требования государственных и частных учреждений, компаний и фирм. Для государственного планирования и развития производительных сил страны необходимо изучать ее территорию в топографическом отношении. Топографические карта и планы, создаваемые геодезистами, нужны всем, кто работает или передвигается по Земле: геологам, морякам, летчикам, проектировщикам, строителям, земледельцам, лесоводам, туристам, школьникам и т.д. Особенно нужны карты армии: строительство оборонительных сооружений, стрельба по невидимым целям, использование ракетной техники, планирование военных операций, - все это без карт и других геодезических материалов просто невозможно. Гео
|
||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 1982; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.195.30 (0.017 с.) |