Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Смещение химического равновесия. Принцип Ле ШательеСодержание книги
Поиск на нашем сайте
Как уже отмечалось ранее, химическое равновесие всегда отвечает определенным условиям. При изменении внешних параметров (температуры, концентрации, в некоторых случаях – давления) равновесие может нарушиться. Это объясняется тем, что изменение условий неодинаково влияет на скорости прямой и обратной реакций. Через некоторое время эти скорости вновь сравниваются (за счет изменения равновесных концентраций) и наступает состояние равновесия, отвечающее новым условиям. Изменение равновесных концентраций реагирующих веществ, вызванное изменением какого-либо параметра системы, называется смещением, или сдвигом, химического равновесия. В 1884 г. Ле Шателье сформулировал принцип, который помогает качественно предсказать смещение химического равновесия при изменении одного из параметров: Если на систему, находящуюся в состоянии химического равновесия, оказано внешнее воздействие, то равновесие сместится в направлении той реакции, которая ослабляет это воздействие. Влияние изменения концентрации. Введение в равновесную систему дополнительных количеств любого из реагирующих веществ ускоряет ту реакцию, в которой оно расходуется. Например, в реакции: 2NO + O2 ⇄ 2NO2 повышение концентраций NO или O2 смещает равновесие вправо, повышение концентрации NO2 – влево. Равновесие смещается вправо также при уменьшении концентрации NO2, а при уменьшении концентрации NO или O2 – влево. Влияние температуры. Повышение температуры смещает равновесие в сторону эндотермической реакции. Таким образом, для того, чтобы судить о влиянии температуры на химическое равновесие, необходимо знать тепловой эффект (изменение энтальпии) реакции. Например, реакция: CO(газ) + H2O(пар) ⇄ CO2(газ) + H2(газ); = -43,0 кДж характеризуется отрицательным значением стандартной энтальпии, следовательно, прямая реакция является экзотермической, обратная – эндотермической. Таким образом, при увеличении температуры равновесие сместится в сторону эндотермической, т.е., обратной реакции, а уменьшение температуры сместит равновесие в сторону экзотермической (прямой) реакции. Влияние давления. Изменение давления оказывает существенное влияние только на реакции, протекающие в газовой фазе. При увеличении давления равновесие смещается в сторону образования меньшего числа моль (молекул) газа. Действительно, уменьшение общего числа молекул в газовой смеси влечет за собой уменьшение давления в системе, что в свою очередь, ослабляет внешнее воздействие. Так, уравнение обратимого процесса: N2 + 3H2 ⇄ 2NH3, показывает, что из четырех молекул в левой части (одной молекулы азота и трех молекул водорода) образуются две молекулы аммиака. Таким образом, повышение давления смещает равновесие вправо, а понижение давления – влево. В тех случаях, когда в результате реакции число молекул остается постоянным, равновесие при изменении давления не смещается. К таким реакциям относятся, например: CO + H2O ⇄ CO2 + H2; N2 + O2 ⇄ 2NO.
Эталоны решения задач 1. Рассчитать константу химического равновесия Kc для реакции: NO2(газ) + SO2(газ) ⇄ NO(газ) + SO3(жидк.) по известным данным:
Оценить возможность самопроизвольного протекания реакции в прямом направлении и значение константы равновесия. Решение. Рассчитаем стандартную энергию Гиббса реакции по первому следствию из закона Гесса: = SО3 + NO - NO2 - SO2 = -32 кДж. < 0, следовательно, процесс самопроизвольно протекает в прямом направлении. Величину Kc найдем из уравнения изотермы Вант-Гоффа: Kc >> 1, т. е. при данной температуре равновесие данной реакции сильно смещено в сторону образования продуктов реакции. 2. Для равновесной реакции: N2 + 3H2 ⇄ 2NH3 имеются следующие данные: = -92,4 кДж, = -0,1978 кДж/К. 1) Рассчитать: а) температуру, при которой система находится в равновесии (Kc = 1); б) значение константы равновесия при 298 К. 2) Указать направление смещения равновесия при повышении (понижении) температуры. Решение. При Кс = 1 стандартная энергия Гиббса равна нулю. Тогда из соотношения: получим: Для данной реакции зависимость энергии Гиббса от температуры выглядит следующим образом: При стандартной температуре (298 К): Значение Кс при данной температуре найдем из соотношения: Проведенный расчет показывает, что: Это означает, что при понижении температуры равновесие смещается в прямом направлении. Аналогичный вывод можно сделать и исходя из принципа Ле Шателье. Действительно реакция образования аммиака – экзотермическая ( < 0), следовательно при повышении температуры равновесие смещается в сторону обратной реакции (разложения аммиака), а при понижении температуры – в сторону прямой реакции (синтеза аммиака). 3. Для реакции CO2(газ) + H2(газ) ⇄ CO(газ) + H2O(пар) константа равновесия равна 1. Исходные концентрации веществ составили: С0(СO2) = 0,2 моль/л; С0(H2) = 0,8 моль/л. Рассчитать, при каких концентрациях всех четырех веществ установилось равновесие. Решение. Обозначим концентрации С(СО2) и С(Н2), вступивших в реакцию, через «х», т. е. С(СO2)прореаг. = С(H2)прореаг. = х моль/л. Тогда: С(СO2)равн. = С0(CO2) - С(СO2)прореаг. = 0,2 - х; С(H2)равн. = С0(H2) - С(H2)прореаг. = 0,8 - х. Из уравнения реакции видно, что: [СO2] = [H2O] = x. Выражение для константы равновесия имеет вид: x2 = 0,16 - 0,2x - 0,8x + x2 x = 0,16. Равновесные концентрации всех веществ равны: [СO2] = 0,2 - 0,16 = 0,04 моль/л; [H2] = 0,8 - 0,16 = 0,64 моль/л; [СO] = [H2O] = 0,16 моль/л. 4. Реакция образования йодистого водорода протекает по уравнению: H2(газ) + I2(газ) ⇄ 2HI(газ). Исходные концентрации веществ составили: С0(H2) = 0,02 моль/л; С0(I2) = 0,04 моль/л. Известно, что в реакцию вступило 50% Н2. 1) Вычислить константу химического равновесия. 2) В каком направлении сместится равновесие, если: а) увеличить концентрацию I2? б) уменьшить концентрацию HI? в) увеличить давление?
Решение. Исходя из уравнения реакции, определяем концентрации веществ, прореагировавших между собой: С(H2)прореаг. = 0,5·0,02 = 0,01 моль/л; С(I2)прореаг. = С(H2)прореаг. = 0,01 моль/л. Находим равновесные концентрации: [HI] = 2×c(H2)прореаг. = 0,02 моль/л (по уравнению реакции); [H2] = c0(H2) - с(H2)прореаг. = 0,02 - 0,01 = 0,01 моль/л; [I2] = c0(I2) - с(I2)прореаг. = 0,04 - 0,01 = 0,03 моль/л. Подставляем равновесные концентрации в выражение константы равновесия: Увеличение концентрации I2 и уменьшение концентрации HI приведет к сдвигу равновесия в сторону прямой реакции. Увеличение давления не вызовет сдвига равновесия. 5. При определенных условиях в системе установилось равновесие: 2NO + O2 ⇄ 2NO2. Равновесные концентрации веществ составили: [NO] = 4 моль/л; [O2] = 6 моль/л; [NO2] = 10 моль/л. Найти исходные концентрации NО и О2. Решение. Исходные концентрации равны сумме равновесных концентраций и концентраций вступивших в реакции веществ. Последние можно определить из стехиометрических соотношений: С(NO)прореаг. = [NO2] = 10 моль/л; С(O2)прореаг. = = 5 моль/л. Отсюда: С0(NO) = [NO] + С(NO)прореаг. = 4 + 10 = 14 моль/л; С0(O2) = [O2] + С(O2)прореаг. = 6 + 5 = 11 моль/л. Вопросы для самоконтроля 1. Какие реакции называют обратимыми? Какие необратимыми? Приведите примеры. 2. Что называется химическим равновесием? Сформулируйте термодинамическое и кинетическое определение состояния химического равновесия. 3. Прекращаются ли реакции после наступления равновесия? 4. Как формулируется закон действующих масс для обратимой реакции? 5. Концентрации каких фаз входят в выражение закона действующих масс для обратимой реакции? 6. Что такое константа равновесия? 7. От каких факторов зависит и от каких не зависит константа равновесия? 8. Может ли К быть равной нулю? 9. Какова взаимосвязь между Kc и Kp? 10. Сформулируйте принцип Ле Шателье. Какие факторы влияют на химическое равновесие? 11. Сформулируйте частные принципы смещения равновесия при изменении температуры, концентрации, давления. 12. Смещает ли равновесие в системе введение в нее катализатора? Варианты задачи для самостоятельного решения Вариант №1 1. Реакция взаимодействия азота с водородом обратима: N2 + 3H2 ⇄ 2NH3. В состоянии равновесия концентрации участвующих в реакции веществ составляют: С(N2) = 0,8 моль/л; С(H2) = 4,8 моль/л; С(NH3) = 0,6 моль/л. Вычислить исходные концентрации азота и водорода. 2. Константа равновесия для реакции: CH4 + Cl2 ⇄ CH3Cl + HCl при 800С равна 1. Исходные концентрации взятых веществ составляли: С(CH4) = 2 моль/л; С(Cl2) = 6 моль/л. Рассчитать, при каких концентрациях всех четырех веществ установилось равновесие. Вариант №2 1. Реакция протекает по уравнению: H2 + Cl2 ⇄ 2HCl. Рассчитать константу химического равновесия, если в реакцию вступило 30% С12. Начальные концентрации веществ равны: С(H2) = 3 моль/л; С(Cl2) = 6 моль/л. 2. При состоянии химического равновесия в системе: 2CO + O2 ⇄ 2CO2 концентрации веществ равны: С(CO) = 5 моль/л; С(O2) = 3 моль/л; С(CO2) = 8 моль/л. Найти исходные концентрации СО и О2. Вариант №3 1. Равновесие реакции: C2H2 + 2H2 ⇄ C2H6 установилось при следующих концентрациях газов: С(C2H2) = 2 моль/л; С(H2) = 1 моль/л; С(C2H6) = 3 моль/л. Рассчитать константу равновесия этой системы и исходные концентрации ацетилена и водорода. 2. Реакция описывается уравнением: A + B ⇄ C + D. Начальные концентрации веществ равны: С(A) = 0,4 моль/л; С(B) = 0,6 моль/л. Константа химического равновесия равна 1. Рассчитать равновесные концентрации всех четырех веществ.
Вариант №4 1. При состоянии химического равновесия в системе: N2 + 3H2 ⇄ 2NH3 концентрации веществ составляют: С(N2) = 2 моль/л; С(H2) = 4 моль/л; С(NH3) = 9 моль/л. Найти исходные концентрации азота и водорода. 2. Константа химического равновесия для реакции: СO2 + H2 ⇄ CO + H2O(пар) при определенной температуре равна 1. Исходные концентрации составляли: С(СO2) = 4 моль/л; С(H2) = 9 моль/л. Рассчитать, при каких концентрациях всех четырех веществ установилось равновесие. Вариант №5 1. При состоянии химического равновесия в системе: Cl2 + 2NO ⇄ 2NOCl концентрации участвующих в реакции веществ составляют: С(Cl2) = 2 моль/л; С(NO) = 6 моль/л; С(NOCl) = 9 моль/л. Рассчитать исходные концентрации веществ С12 и NO. 2. При взаимодействии азота и водорода установилось равновесие: N2 + 3H2 ⇄ 2NH3. Исходные концентрации азота и водорода равны: С(N2) = 2 моль/л; С(H2) = 1 моль/л. Равновесная концентрация азота С(N2) = 1,8 моль/л. Найти равновесные концентрации водорода и аммиака. Вариант №6 1. Реакция протекает по уравнению: H2 + I2 ⇄ 2HI. В равновесной смеси при температуре 4000С: С(H2) = 0,5 моль/л; С(I2) = 0,2 моль/л; С(HI) = 0,4 моль/л. Вычислить константу равновесия реакции при указанной температуре и исходные концентрации Н2 и I2. 2. Константа равновесия реакции: CH3COOH + C2H5OH ⇄ CH3COOC2H5 + H2O при температуре 120С равна 1. Определить равновесные концентрации всех четырех веществ, если исходные концентрации веществ равны: С(CH3COOH) = 1 моль/л; С(C2H5OH) = 0,2 моль/л. Вариант №7 1. Равновесие реакции: 2Cl2 + O2 ⇄ 2Cl2O установилось при следующих концентрациях газов: С(Cl2) = 5 моль/л; С(O2) = 7 моль/л; С(Cl2O) = 3 моль/л. Рассчитать константу равновесия системы и исходные концентрации С12 и О2. 2. Реакция выражается уравнением: A + B ⇄ C + D. Начальные концентрации веществ: С(A) = 1 моль/л; С(B) = 3 моль/л. Константа химического равновесия равна 1. Рассчитать, сколько моль С и D образовалось. Вариант №8 1. В системе C2H6 + H2 ⇄ 2CH4 химическое равновесие установилось к моменту, когда 20% Н2 вступило в реакцию. Рассчитать константу химического равновесия, зная, что исходные концентрации были равны: С(H2) = 8 моль/л; С(C2H6) = 3 моль/л. 2. При определенных условиях в системе: 2SO2 + O2 ⇄ 2SO3 установилось химическое равновесие. При этом концентрации всех веществ были следующими: С(SO2) = 5 моль/л; С(O2) = 6 моль/л; С(SO3) = 10 моль/л. Вычислить исходные концентрации SO2 и О2. Вариант №9 1. При состоянии химического равновесия в системе: N2 + 3H2 ⇄ 2NH3 концентрации участвующих в реакции веществ составили: С(N2) = 3 моль/л; С(H2) = 6 моль/л; С(NH3) = 9 моль/л. Вычислить исходные концентрации Н2 и N2. В каком направлении сместится равновесие, если в системе: а) увеличить давление; б) уменьшить концентрацию водорода. 2. Вычислить константу химического равновесия для реакции: H2 + Cl2 ⇄ 2HCl, если известно, что равновесие наступит тогда, когда прореагирует 50% Н2. Исходные концентрации: С(H2) = 6 моль/л; С(Cl2) = 8 моль/л.
Вариант №10 1. В системе установилось равновесие: H2 + Cl2 ⇄ 2HCl. Исходные концентрации С(H2) = 2 моль/л; С(Cl2) = 3 моль/л. Константа равновесия равна 4. Рассчитать равновесные концентрации всех веществ в системе. 2. При нагревании диоксида азота в закрытом сосуде до некоторой температуры равновесие реакции: 2NO2 ⇄ 2NO + O2 установилось при следующих концентрациях: С(NO2) = 0,5 моль/л; С(NO) = 1,2 моль/л; С(O2) = 0,6 моль/л. Вычислить константу равновесия реакции для этой температуры и найти исходную концентрацию NO2. Вариант №11 1. При взаимодействии азота и водорода установилось равновесие: N2 + 3H2 ⇄ 2NH3. Исходные концентрации азота и водорода составляли: С(N2) = 2 моль/л; С(H2) = 6 моль/л. Равновесная концентрация азота равна: С(N2) = 1,5 моль/л. Рассчитать равновесные концентрации водорода и аммиака. 2. Равновесие реакции: C2H4 + H2 ⇄ C2H6 установилось при следующих концентрациях газов: С(C2H4) = 0,6 моль/л; С(H2) = 0,4 моль/л; С(C2H6) = 1,2 моль/л. Рассчитать константу равновесия этой системы, а также исходные концентрации С2Н4 и Н2. Вариант №12 1. Вычислить константу химического равновесия для реакции: N2 + 3H2 ⇄ 2NH3, если известно, что равновесие наступит тогда, когда прореагирует 50% Н2. Исходные концентрации: С(N2) = 0,8 моль/л; С(H2) = 2,4 моль/л. 2. При нагревании оксида серы (VI) в закрытом сосуде до некоторой температуры равновесие реакции: 2SO3 ⇄ 2SO2 + O2 установилось при следующих концентрациях: С(SO3) = 0,8 моль/л; С(SO2) = 3,2 моль/л; С(O2) = 1,6 моль/л. Вычислить исходную концентрацию SO3.
Вариант №13 1. Реакция взаимодействия азота и водорода обратима: N2 + 3H2 ⇄ 2NH3. В состоянии равновесия концентрации участвующих в реакции веществ равны: С(N2) = 0,3 моль/л; С(H2) = 0,2 моль/л; С(NH3) = 0,2 моль/л. Вычислить исходные концентрации азота и водорода. 2. Константа химического равновесия для реакции: CH4 + Cl2 ⇄ CH3Cl + HCl при 300К равна 1. Исходные концентрации взятых веществ: С(CH4) = 5 моль/л; С(Cl2) = 4 моль/л. Рассчитать, при каких концентрациях всех четырех веществ установилось равновесие. Вариант №14 1. При нагревании СОС12 в закрытом сосуде до некоторой температуры равновесие реакции: COCl2 ⇄ CO + Cl2 установилось при следующих концентрациях: С(COCl2) = 3 моль/л; С(CO) = 6 моль/л. Вычислить константу химического равновесия для данной реакции и исходную концентрацию СОСl2. 2. В системе H2 (газ) + I2 (газ) ⇄ 2HI (газ) установилось равновесие. Исходные концентрации веществ равны: С(H2) = 0,2 моль/л; С(I2) = 0,4 моль/л. Константа равновесия равна 4. Рассчитать равновесные концентрации всех веществ в системе. Вариант №15 1. При определенных условиях в системе установилось равновесие: Cl2 + 2O2 ⇄ 2ClO2. При этом равновесные концентрации веществ равны: С(Cl2) = 4 моль/л; С(O2) = 8 моль/л; С(ClO2) = 10 моль/л. Вычислить исходные концентрации хлора и кислорода. 2. Реакция протекает по уравнению: 2CO + O2 ⇄ 2CO2. Рассчитать константу химического равновесия, если в реакцию вступило 50% О2. Начальные концентрации веществ равны: С(CO) = 5 моль/л; С(O2) = 2 моль/л.
Вариант №16 1. При взаимодействии хлора и оксида азота (II) установилось равновесие: 2NO + Cl2 ⇄ 2NOCl. Исходные концентрации хлора и оксида азота (II) равны: С(NO) = 6 моль/л; С(Cl2) = 3 моль/л. Равновесная концентрация хлора: С(Cl2) = 1,5 моль/л. Найти равновесные концентрации NO и NOC1. 2. Равновесие реакции С2H2 + 2H2 ⇄ C2H6 установилось при следующих концентрациях газов: С(С2H2) = 2 моль/л; С(H2) = 4 моль/л; С(С2H6) = 3 моль/л. Рассчитать константу химического равновесия этой системы и исходные концентрации С2Н2 и Н2. Вариант №17 1. Реакция протекает по уравнению: H2 + Br2 ⇄ 2HBr. Равновесная смесь при температуре 2000С содержит С(H2) = 4 моль/л; С(Br2) = 0,2 моль/л; С(HBr) = 0,8 моль/л. Вычислить константу химического равновесия реакции при указанной температуре и исходные концентрации Н2 и Вr2. 2. Константа равновесия реакции: CO2 + H2 ⇄ CO + H2O (пар) при некоторой температуре равна 1. Определить равновесные концентрации всех четырех веществ, если исходные концентрации веществ равны: С(CO2) = 2 моль/л; С(H2) = 3 моль/л. Вариант №18 1. В системе 2SO2 + O2 ⇄ 2SO3 установилось химическое равновесие к моменту, когда прореагировало 60% О2. Рассчитать константу химического равновесия, зная, что исходные концентрации составляли: С(SO2) = 6 моль/л; С(O2) = 4 моль/л. 2. При определенных условиях в системе CO2 + H2 ⇄ CH3OH установилось химическое равновесие. При этом концентрации всех веществ составили: С(CO) = 0,8 моль/л; С(H2) = 1 моль/л; С(CH3OH) = 6 моль/л. Вычислить исходные концентрации СО и Н2. БЛОК ИНФОРМАЦИИ
РАСТВОРЫ Общие сведения Растворы - это гомогенные системы переменного состава, состоящие из двух и более веществ, называемых компонентами. По агрегатному состоянию растворы могут быть газообразными (воздух), жидкими (кровь, лимфа) и твердыми (сплавы). В медицине наибольшее значение имеют жидкие растворы, которые играют исключительную роль в жизнедеятельности живых организмов. С образованием растворов связаны процессы усвоения пищи и выведения из организма продуктов жизнедеятельности. В форме растворов вводится большое количество лекарственных препаратов. Для качественного и количественного описания жидких растворов используются термины «растворитель» и «растворенное вещество», хотя в некоторых случаях такое разделение является достаточно условным. Так, медицинский спирт (96% раствор этанола в воде) скорее следует рассматривать как раствор воды в спирте. Все растворители делятся на неорганические и органические. Важнейшим неорганическим растворителем (а в случае биологических систем – единственным) является вода. Это обусловлено такими свойствами воды, как полярность, низкая вязкость, склонность молекул к ассоциации, относительно высокие температуры кипения и плавления. Растворители органической природы разделяют на полярные (спирты, альдегиды, кетоны, кислоты) и неполярные (гексан, бензол, четыреххлористый углерод). Процесс растворения в равной степени зависит как от природы растворителя, так и от свойств растворенного вещества. Очевидно, что способность образовывать растворы выражена у разных веществ по-разному. Одни вещества могут смешиваться друг с другом в любых количествах (вода и этанол), другие – в ограниченных (вода и фенол). Однако, следует помнить: абсолютно нерастворимых веществ не существует! Склонность вещества растворяться в том или ином растворителе можно определить, используя простое эмпирическое правило: подобное растворяется в подобном. Действительно, вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, например, в воде. И наоборот, растворимость кислорода в бензоле на порядок выше чем в воде, так как молекулы O2 и C6H6 неполярны. Степень сродства соединения к определенному типу растворителя можно оценить, анализируя природу и количественное соотношение входящих в его состав функциональных групп, среди которых выделяют гидрофильные (притягивающие воду) и гидрофобные (отталкивающие воду). К гидрофильным относят полярные группы, такие как гидроксильная (-OH), карбоксильная (-COOH), тиольная (-SH), амино (-NH2). Гидрофобными считают неполярные группы: углеводородные радикалы алифатического (-CH3, -C2H5) и ароматического (-C6H5) рядов. Соединения, имеющие в своем составе как гидрофильные, так и гидрофобные группы, называют дифильными. К таким соединениям относят аминокислоты, белки, нуклеиновые кислоты. Теории растворов В настоящее время известны две основные теории растворов: физическая и химическая.
|
||||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 2921; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.208.189 (0.012 с.) |