Классификация компьютеров по областям применения. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация компьютеров по областям применения.



Персональные компьютеры (ПК) появились в результате эволюции миникомпьютеров при переходе элементной базы машин с малой и средней степенью интеграции на большие и сверхбольшие интегральные схемы. ПК, благодаря своей низкой стоимости, очень быстро завоевали хорошие позиции на компьютерном рынке и создали предпосылки для разработки новых программных средств, ориентированных на конечного пользователя. Это, прежде всего, пользовательские интерфейсы, а также проблемно-ориентированные среды и инструментальные средства для автоматизации разработки прикладных программ.

Рабочие станции были ориентированы на профессиональных пользователей. Рабочие станции – это хорошо сбалансированные системы, в которых высокое быстродействие сочетается с большим объемом оперативной и внешней памяти, высокопроизводительными внутренними магистралями, высококачественной и быстродействующей графической подсистемой и разнообразными устройствами ввода/вывода. В настоящее время появилось понятие "персональной рабочей станции", которое объединяет оба направления.

X-терминалы представляют собой комбинацию бездисковых рабочих станций и стандартных терминалов. Бездисковые рабочие станции часто применялись в качестве дорогих дисплеев и в этом случае не полностью использовали локальную вычислительную мощь.

Серверы Прикладные многопользовательские системы используют технологию «клиент-сервер» и распределенную обработку данных. В случае «клиент-сервер» часть работы выполняет сервер, а часть пользовательский компьютер (в общем случае клиентская и пользовательская части могут работать и на одном компьютере). Существует несколько типов серверов, ориентированных на разные применения: файл-сервер, сервер базы данных, принт-сервер, вычислительный сервер, сервер приложений. Таким образом, тип сервера определяется видом ресурса, которым он владеет (файловая система, база данных, принтеры, процессоры или прикладные пакеты программ).

Скорость процессора для серверов с интенсивным вводом/выводом некритична. Они должны быть оснащены достаточно мощными блоками питания для возможности установки дополнительных плат расширения и дисковых накопителей. Желательно применение устройства бесперебойного питания. Оперативная память обычно имеет объем не менее 128 Мбайт, что позволит операционной системе использовать большие дисковые кэши и увеличить производительность сервера. При наличии одного сегмента сети и 10-20 рабочих станций пиковая пропускная способность сервера ограничивается максимальной пропускной способностью сети. В этом случае замена процессоров или дисковых подсистем более мощными не увеличивают производительность, так как узким местом является сама сеть. Поэтому важно использовать хорошую плату сетевого интерфейса.

Современные серверы характеризуются:

– наличием двух или более центральных процессоров;

– многоуровневой шинной архитектурой, в которой высокоскоростная системная шина связывает между собой несколько процессоров и оперативную память, а также множество стандартных шин ввода/вывода, размещенных в том же корпусе;

– поддержкой технологии дисковых массивов RAID;

– поддержкой режима симметричной многопроцессорной обработки, которая позволяет распределять задания по нескольким центральным процессорам или режима асимметричной многопроцессорной обработки, которая допускает выделение процессоров для выполнения конкретных задач.

Мейнфреймы – до сегодняшнего дня остаются наиболее мощными вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. В архитектурном плане мейнфреймы представляют собой многопроцессорные системы, содержащие один или несколько центральных и периферийных процессоров с общей памятью, связанных между собой высокоскоростными магистралями передачи данных. При этом основная вычислительная нагрузка ложится на центральные процессоры, а периферийные обеспечивают работу с множеством периферийных устройств.

Главным недостатком мейнфреймов в настоящее время остается относительно низкое соотношение производительность/стоимость.

2.Системы высокой готовности. Существует несколько типов систем высокой готовности, отличающиеся своими функциональными возможностями и стоимостью. Стоимость систем высокой готовности на много превышает стоимость обычных систем. Вероятно, поэтому наибольшее распространение в мире получили кластерные системы, благодаря тому, что они обеспечивают достаточно высокий уровень готовности систем при относительно низких затратах.

Кластеризация – это реализация объединения машин, представляющихся единым целым для операционной системы, системного программного обеспечения, прикладных программ и пользователей. Машины, кластеризованные вместе таким способом, могут при отказе одного процессора очень быстро перераспределить работу на другие процессоры внутри кластера. Если происходит отказ одного из компьютеров, задания его пользователей автоматически могут быть перенесены на другой компьютер кластера. Если в системе имеется несколько контроллеров внешних накопителей и один из них отказывает, другие контроллеры автоматически подхватывают его работу (высокая готовность).

Высокая пропускная способность. Ряд прикладных систем могут пользоваться возможностью параллельного выполнения заданий на нескольких компьютерах кластера.

Удобство обслуживания системы. Общие базы данных могут обслуживаться с единственного места. Расширяемость. Увеличение вычислительной мощности кластера достигается подключением к нему дополнительных компьютеров.

3.X-терминалы Типовой X-терминал включает следующие элементы:

– экран высокого разрешения – обычно размером от 14 до 21 дюйма по диагонали;

– микропроцессор на базе Motorola 68xxx или RISC-процессор типа Intel i960, MIPS R3000 или AMD29000;

– отдельный графический сопроцессор в дополнение к основному процессору, поддерживающий двухпроцессорную архитектуру, которая обеспечивает более быстрое рисование на экране и прокручивание экрана;

– базовые системные программы, на которых работает система X-Windows и выполняются сетевые протоколы;

– программное обеспечение сервера X11.

– переменный объем локальной памяти (от 2 до 8 Мбайт) для дисплея, сетевого интерфейса, поддерживающего сетевые протоколы передачи данных.

– порты для подключения клавиатуры и мыши.

Хтерминал:микропроц.,графическ процесс,порты подкл клавиатуры и мыши, память для харнения сетевых протоколов, OC X-Windows/

Xсервер:опертивная память,жесткий диск, мощный графический процесс,OC 11.

X-терминалы отличаются от ПК и рабочих станций не только тем, что не выполняет функции обычной локальной обработки. Работа X-терминалов зависит от главной (хост) системы, к которой они подключены посредством сети. Для того чтобы X-терминал мог работать, пользователи должны инсталлировать программное обеспечение многооконного сервера X11 на главном процессоре, выполняющем прикладную задачу (наиболее известная версия X11 Release 5). Минимальный объем требуемой для работы памяти X-терминала составляет 1 Мбайт. Оснащенный стандартной системой X-Windows, X-терминал может отображать на одном и том же экране множество приложений одновременно. Каждое приложение может выполняться в своем окне, а пользователь может изменять размеры окон, их месторасположение и манипулировать ими в любом месте экрана.

Билет №4

1.Системы прерываний. Прерывание – это инициируемый определенным образом процесс, временно переключающий микропроцессор на выполнение другой программы с последующим возобновлением выполнения прерванной программы.

Механизм прерываний позволяет обеспечить наиболее эффективное управление не только внешними устройствами, но и программами. Некоторые операционные системы используют механизм прерываний не только для обслуживания внешних устройств, но и для предоставления своих услуг. Прерывания могут быть внешними и внутренними. Внешние прерывания вызываются внешними по отношению к микропроцессору событиями. На них формируются внешние по отношению к микропроцессору сигналы, которые извещают микропроцессор о том, что некоторое внешнее устройство просит уделить ему внимание. Внутренние прерывания возникают внутри микропроцессора во время вычислительного процесса. К их возбуждению приводит одна из двух причин:

– ненормальное внутреннее состояние микропроцессора, возникшее при обработке некоторой команды программы;

– обработка машинной команды «int xx». Такой тип прерываний называется программным. Это – планируемые прерывания, так как с их помощью программист обращается в нужное для него время за обслуживанием своих запросов либо к операционной системе, либо к BIOS, либо к собственным программам обработки прерываний.

2. концепция шины данных. Шина данных – это когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы.Концепция шины представляет собой один из наиболее совершенных методов унификации при разработке компьютеров. Вместо того чтобы пытаться соединять все элементы компьютерной системы между собой специальными соединениями, разработчики компьютеров ограничили пересылку данных одной общей шиной. Данные пересылаются по шине в сопровождении специальных сигналов, обозначающих их назначение. Эта идея чрезвычайно упростила конструкцию компьютеров и существенно увеличила ее гибкость. Чтобы добавить новый компонент, не требуется выполнять множество различных соединений, достаточно присоединить его к шине. Чтобы упорядочить передачу информации по шине используется контроллер шины.

3.Иерархия памяти. В основе реализации иерархии памяти лежат два принципа: принцип локальности обращений и соотношение стоимость/производительность.

Принцип локальности обращений говорит о том, что большинство программ к счастью не выполняют обращений ко всем своим командам и данным равновероятно, а оказывают предпочтение некоторой части своего адресного пространства.

Иерархия памяти современных компьютеров строится на нескольких уровнях, причем более высокий уровень меньше по объему, быстрее и имеет большую стоимость в пересчете на байт, чем более низкий уровень. Уровни иерархии взаимосвязаны: все данные на одном уровне могут быть также найдены на более низком уровне, и все данные на этом более низком уровне могут быть найдены на следующем нижележащем уровне и так далее, пока мы не достигнем основания иерархии.

Иерархия памяти обычно состоит из многих уровней, но в каждый момент времени мы имеем дело только с двумя близлежащими уровнями. Минимальная единица информации, которая может либо присутствовать, либо отсутствовать в двухуровневой иерархии, называется блоком. Размер блока может быть либо фиксированным, либо переменным. Если этот размер зафиксирован, то объем памяти является кратным размеру блока.

Успешное или неуспешное обращение к более высокому уровню называются соответственно попаданием или промахом.

Попадание – есть обращение к объекту в памяти, который найден на более высоком уровне, в то время как промах означает, что он не найден на этом уровне.

Поскольку повышение производительности является главной причиной появления иерархии памяти, частота попаданий и промахов является важной характеристикой. Время обращения при попадании есть время обращения к более высокому уровню иерархии, которое включает в себя, в частности, и время, необходимое для определения того, является ли обращение попаданием или промахом. Потери на промах есть время для замещения блока в более высоком уровне на блок из более низкого уровня плюс время для пересылки этого блока в требуемое устройство (обычно в процессор). Потери на промах далее включают в себя две компоненты: время доступа – время обращения к первому слову блока при промахе, и время пересылки – дополнительное время для пересылки оставшихся слов блока. Время доступа связано с задержкой памяти более низкого уровня, в то время как время пересылки связано с полосой пропускания канала между устройствами памяти двух смежных уровней.

 

Билет №5

1. организации основной памяти. Основная память представляет собой следующий уровень иерархии памяти. Основная память удовлетворяет запросы кэш-памяти и служит в качестве интерфейса ввода/вывода, поскольку является местом назначения для ввода и источником для вывода. Для оценки производительности основной памяти используются два основных параметра: задержка и полоса пропускания. Традиционно задержка основной памяти имеет отношение к кэш-памяти, а полоса пропускания или пропускная способность относится к вводу/выводу. В связи с ростом популярности кэш-памяти второго уровня и увеличением размеров блоков у такой кэш-памяти, полоса пропускания основной памяти становится важной также и для кэш-памяти.

Задержка памяти традиционно оценивается двумя параметрами: временем доступа и длительностью цикла памяти.

Время доступа представляет собой промежуток времени между выдачей запроса на чтение и моментом поступления запрошенного слова из памяти.

Длительность цикла памяти определяется минимальным временем между двумя обращениями к памяти.

Полупроводниковая оперативная память в настоящее время делится на статическое ОЗУ (SRAM) и динамическое ОЗУ (DRAM). (RAM – запоминающее устройство с произвольной выборкой).

Микросхемы (DRAM) характеризуются большей емкостью и меньшей стоимостью, но требуют схем регенерации и имеют значительно большее время доступа.

Триггером называют элемент на транзисторах, который может находиться в одном из двух устойчивых состояний (0 и 1), а по внешнему сигналу он способен менять состояние. Триггер может служить ячейкой памяти, хранящей один бит информации.

Память, основанная на триггерах, называется статической (SRAM).

Принцип устройства DRAM следующий: система металл-диэлектрик-полупроводник способна работать как конденсатор, т.е. способна некоторое время держать на себе электрический заряд. Обозначив заряженное состояние как 1 и незаряженное как 0, получим ячейку памяти емкостью 1 бит. Поскольку заряд на конденсаторе рассеивается через некоторый промежуток времени, то его необходимо периодически подзаряжать (регенерировать), считывая и вновь записывая в него данные. Из-за этого и возникло понятие «динамическая» для этого вида памяти.

Статическое ОЗУ – дорогой и неэкономичный вид ОЗУ, поэтому его используют в основном для кэш-памяти и в регистрах микропроцессорах.

2истрория ЭВМ. 1ое поколение ЭВМ (1948 — 1958гг.) Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ,, М-1, М-2, М-З.Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение.В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами.

2ое поколение ЭВМ (1959 — 1967 гг.) Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Увеличилась емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. ЭВМ М-40, -50 для систем противоракетной обороны; Урал -11, -14, -16 – ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;

3е поколение ЭВМ (1968 — 1973 гг.) Элементная база ЭВМ – малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники. Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Для управления технологическими процессами создаются ЭВМ серии АСВТ М-6000 и М-7000. Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, «Электроника -79.Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем.

4ое и 5ое поколения ЭВМ (1974 — настоящее время) Элементная база ЭВМ – большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. ЭВМ ЕС: ЕС-1015, -1025, «Электроника МС 0501», «Электроника-85», «Эльбрус». «Эльбрус-1».

3.Режим вложенных прерываний.. В этом режиме каждому входу (уровню) irq0...irq7 присваивается фиксированное значение приоритета, причем уровень irq0 имеет наивысший приоритет, а irq7 - наименьший. Приоритетность прерываний определяет их право на прерывание обработки менее приоритетного прерывания более приоритетным (при условии, конечно, что IF=1). IF (Interrupt Flag) – флаг прерывания. Предназначен для так называемого маскирования (запрещения) аппаратных прерываний, то есть прерываний по входу INTR(вывод для входного сигнала внешнего прерывания). На обработку прерываний остальных типов флаг IF влияния не оказывает. Если IF=1, микропроцессор обрабатывает внешние прерывания, если IF = 0, микропроцессор игнорирует сигналы на входе INTR;

 

Билет №6

1.Концепция виртуальной памяти позволила решить целый ряд актуальных вопросов организации вычислений. Прежде всего, к числу таких вопросов относится обеспечение надежного функционирования мультипрограммных систем.

В любой момент времени компьютер выполняет множество процессов или задач, каждая из которых располагает своим адресным пространством. Необходим механизм разделения небольшой физической памяти между различными задачами. Виртуальная память делит физическую память на блоки и распределяет их между различными задачами. При этом она предусматривает также некоторую схему защиты, которая ограничивает задачу теми блоками, которые ей принадлежат. Большинство типов виртуальной памяти сокращают также время начального запуска программы на процессоре, поскольку не весь программный код и данные требуются ей в физической памяти, чтобы начать выполнение.

Другой вопрос, тесно связанный с реализацией концепции виртуальной памяти, касается организации вычислений на компьютере задач очень большого объема. Если программа становилась слишком большой для физической памяти, часть ее необходимо было хранить во внешней памяти (на диске) и задача приспособить ее для решения на компьютере ложилась на программиста. Виртуальная память освободила программистов от этого бремени. Она автоматически управляет двумя уровнями иерархии памяти: основной памятью и внешней (дисковой) памятью.

Кроме того, виртуальная память упрощает также загрузку программ, обеспечивая механизм автоматического перемещения программ, позволяющий выполнять одну и ту же программу в произвольном месте физической памяти.

Системы виртуальной памяти можно разделить на два класса: системы с фиксированным размером блоков, называемых страницами, и системы с переменным размером блоков, называемых сегментами.

2. концепция шины данных Шина данных – это когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы.Концепция шины представляет собой один из наиболее совершенных методов унификации при разработке компьютеров. Вместо того чтобы пытаться соединять все элементы компьютерной системы между собой специальными соединениями, разработчики компьютеров ограничили пересылку данных одной общей шиной. Данные пересылаются по шине в сопровождении специальных сигналов, обозначающих их назначение. Эта идея чрезвычайно упростила конструкцию компьютеров и существенно увеличила ее гибкость. Чтобы добавить новый компонент, не требуется выполнять множество различных соединений, достаточно присоединить его к шине. Чтобы упорядочить передачу информации по шине используется контроллер шины.



Поделиться:


Последнее изменение этой страницы: 2016-08-15; просмотров: 622; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.34.178 (0.037 с.)