Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физическая организация ПК фирмы IBM.

Поиск

1)Микропроцессор -является центральным узлом ПК. Процессор обладает способностью выполнять команды, составляющие компьютерную программу. ПК строятся на базе микропроцессоров, выполняемых в настоящее время на одном кристалле или «чипе».

Микропроцессор, использованный в IBM/PC, был разработан и создан фирмой «Интел». Отличие IBM/PC от ПК предыдущего поколения заключается в использовании 16-разрядного микропроцессора. До этого были 8-разрядныхы.Различия между 8- и 16-разрядными микропроцессорами состоит в том, что 8-разрядные процессоры могут манипулировать данными, состоящими из 8 бит, а 16-разрядные процессоры могут работать и 16-разрядными данными. Основное преимущество 16-разрядных процессоров перед 8-разрядными заключается в значительном повышении их быстродействия, мощности и удобства их набора команд. Кроме того, существенно увеличивается объем адресуемой памяти.

Физически составляющие IBM/PC можно разделить на компоненты системного блока и компоненты блока расширения. Все основные платы, входящие в состав любой модели IBM/PC, размещаются в большом блоке, получившем название «системный». Системный блок включает все необходимые компоненты, позволяющие компьютеру работать без каких-либо дополнений. Здесь находятся микропроцессор, первые 64К памяти и встроенные программы, записанные в микросхемах ПЗУ. Блоки расширения или карты, как их иногда называют, могут использоваться для обслуживания устройств, подключаемых к IBM/PC. Они могут использоваться для двух основных целей: для увеличения объема памяти и подключения дополнительных устройств. Если оборудование умещается на одной плате, то его можно разместить внутри корпуса IBM/PC. Если же оно не помещается в корпус как, например, в случае с дисплеем, то внутри размещается только плата управления, которая соединяется с оборудованием с помощью кабеля, который можно пропустить через отверстие в задней стенке корпуса. Каждому разъему расширения соответствует специальное отверстие в задней стенке корпуса, закрытое заглушкой, если оно не используется. Системный блок разработан фирмой IBM, а блоки расширения могут разрабатывать все желающие, при условии, что они будут соблюдать основные правила, касающиеся размеров, электрических параметров соединений, теплового режима и так далее.

Сигналы синхронизации работы системы обеспечиваются генератором 8284А. Эти сигналы используются всеми элементами компьютера и задают длительность операций. С тактовым генератором связан таймер 8255А-5, использующийся для поддержки интерфейса накопителя на кассетной магнитной ленте и встроенного динамика.

Функционирование компьютерной системы основано на использовании прерываний. Для организации работы системы прерываний используется микросхема 8259А. Когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы. Этот путь получил название шины данных.

2.Иерархия памяти. В основе реализации иерархии памяти лежат два принципа: принцип локальности обращений и соотношение стоимость/производительность.

Принцип локальности обращений говорит о том, что большинство программ к счастью не выполняют обращений ко всем своим командам и данным равновероятно, а оказывают предпочтение некоторой части своего адресного пространства.

Иерархия памяти современных компьютеров строится на нескольких уровнях, причем более высокий уровень меньше по объему, быстрее и имеет большую стоимость в пересчете на байт, чем более низкий уровень. Уровни иерархии взаимосвязаны: все данные на одном уровне могут быть также найдены на более низком уровне, и все данные на этом более низком уровне могут быть найдены на следующем нижележащем уровне и так далее, пока мы не достигнем основания иерархии.

Иерархия памяти обычно состоит из многих уровней, но в каждый момент времени мы имеем дело только с двумя близлежащими уровнями. Минимальная единица информации, которая может либо присутствовать, либо отсутствовать в двухуровневой иерархии, называется блоком. Размер блока может быть либо фиксированным, либо переменным. Если этот размер зафиксирован, то объем памяти является кратным размеру блока.

Успешное или неуспешное обращение к более высокому уровню называются соответственно попаданием или промахом.

Попадание – есть обращение к объекту в памяти, который найден на более высоком уровне, в то время как промах означает, что он не найден на этом уровне.

Поскольку повышение производительности является главной причиной появления иерархии памяти, частота попаданий и промахов является важной характеристикой. Время обращения при попадании есть время обращения к более высокому уровню иерархии, которое включает в себя, в частности, и время, необходимое для определения того, является ли обращение попаданием или промахом. Потери на промах есть время для замещения блока в более высоком уровне на блок из более низкого уровня плюс время для пересылки этого блока в требуемое устройство (обычно в процессор). Потери на промах далее включают в себя две компоненты: время доступа – время обращения к первому слову блока при промахе, и время пересылки – дополнительное время для пересылки оставшихся слов блока. Время доступа связано с задержкой памяти более низкого уровня, в то время как время пересылки связано с полосой пропускания канала между устройствами памяти двух смежных уровней.

3.Главное устройство шины – это устройство, которое может инициировать операции чтения или записи. Процессор, например, всегда является главным устройством шины. Шина имеет несколько главных устройств, если имеется несколько центральных процессоров или когда устройства ввода/вывода могут инициировать транзакции на шине. Приоритетность управляющих устройств основано на системе прерываний.

Существует два типа шин, отличающиеся способом коммутации: шины с коммутацией цепей и шины с коммутацией пакетов.

Шина с коммутацией пакетов при нескольких главных устройств шины обеспечивает значительно большую пропускную способность, по сравнению с шиной с коммутацией цепей, за счет разделения операций на две логические части: запроса шины и ответа. Операция чтения разбивается на запрос чтения и ответ памяти.

На шине с коммутацией цепей любая операция неделима. Главное устройство блокирует шину до окончания обслуживания запроса.

Шина бывает синхронной и асинхронной. Если шина синхронная, то по линиям управления шины передаются сигналы синхронизации. Все на шине должно происходить с одной и той же частотой синхронизации, поэтому из-за проблемы перекоса синхросигналов, синхронные шины не могут быть длинными. Обычно шины процессор-память синхронные.

В асинхронной шине используется старт-стопный режим передачи. Шины ввода/вывода обычно асинхронные.

 

Билет №11

1.К периферийным устройствам, т.е. подключаемым наряду с монитором (через видеоадаптер) и клавиатурой к системному блоку персонального компьютера, относятся принтеры, мыши, модемы, сканеры, внешние накопители (в том числе, на жестких и гибких магнитных дисках, CD-ROM, магнитооптических дисках, WORM-накопители и др.), стримеры, дигитайзеры, плоттеры, устройства мультимедиа (видеобластеры, звуковые платы и акустические системы), трекболы, джойстики и т.д..

Периферийные устройства служат для расширения функциональных возможностей персонального компьютера, удобства управления им и представления информации в различных формах в процессе ее обработки, хранения и отображения.

Подсоединение периферийных устройств к компьютеру производится через устройства сопряжения (адаптеры), на которых реализованы стандартные или специальные интерфейсы. Обычно адаптеры выполняются в виде отдельных плат ввода-вывода, вставляемых в разъемы расширения на системной плате. Интерфейс определяет тип и вид соединителя (розетка или вилка, female (мама – на разъеме отверстия) или male (папа – на разъеме штырьки)), протоколы обмена, уровни и длительности электрических сигналов. Последовательный и параллельный интерфейсы называют также портами ввода-вывода.

Последовательные порты используются для подключения мыши, удаленного принтера, внешнего модема, плоттера и др.

Параллельные порты используются для подключения принтера, сканера, плоттера.

2истрория ЭВМ. 1ое поколение ЭВМ (1948 — 1958гг.) Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ,, М-1, М-2, М-З.Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение.В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами.

2ое поколение ЭВМ (1959 — 1967 гг.) Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Увеличилась емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. ЭВМ М-40, -50 для систем противоракетной обороны; Урал -11, -14, -16 – ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;

3е поколение ЭВМ (1968 — 1973 гг.) Элементная база ЭВМ – малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники. Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

Для управления технологическими процессами создаются ЭВМ серии АСВТ М-6000 и М-7000. Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, «Электроника -79.Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем.

4ое и 5ое поколения ЭВМ (1974 — настоящее время) Элементная база ЭВМ – большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. ЭВМ ЕС: ЕС-1015, -1025, «Электроника МС 0501», «Электроника-85», «Эльбрус». «Эльбрус-1».

3.Вектор прерываний. процессору предоставляется информация об уровне приоритета прерывания на шине подключения внешних устройств. В случае векторных прерываний в процессор передается также информация о начальном адресе программы обработки возникшего прерывания — обработчика прерываний.

Устройствам, которые используют векторные прерывания, назначается вектор прерываний. Он представляет собой электрический сигнал, выставляемый на соответствующие шины процессора и несущий в себе информацию об определенном, закрепленном за данным устройством номере, который идентифицирует соответствующий обработчик прерываний. Этот вектор может быть фиксированным, конфигурируемым (например, с использованием переключателей) или программируемым.

Билет №12



Поделиться:


Последнее изменение этой страницы: 2016-08-15; просмотров: 311; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.29.90 (0.007 с.)