Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Опис вимірювальної установки.Содержание книги Поиск на нашем сайте
Для визначення параметрів досліджуваної збірної лінзи, і вивчення її оптичних дефектів збирається лабораторна установка (рис. 6). В результаті зсуву екрану Е відносно оптичної лінзи L без діафрагми D вздовж оптичної лави домагаються максимального фокусування променів на екрані. При цьому вимірюється фокусна відстань. Розташування різних діафрагм перед лінзою призводить до зміни фокусної відстані. Максимальний розкид значень фокусної відстані й визначає значення сферичної аберації.
Рис. 6.
4. Контрольні запитання. 1. Що являє собою оптична лінза? Які лінзи ви знаєте? 2. Що таке оптичний центр лінзи, фокус і фокальна площина? 3. Що таке оптична сила лінзи і головна фокусна відстань? Який взаємозв'язок між ними? 4. Що мається на увазі під стигматичним зображенням? 5. Які промені називаються параксіальними? 6. Від чого виникають дефекти лінз? Перелічіть відомі вам дефекти лінз. 7. Що таке сферична аберація? 8. Які вам відомі способи боротьби з різними спотвореннями зображень в оптичних лінзах?
Домашнє завдання. Для виконання роботи необхідно вивчити зазначені нижче питання з курсу фізики: основні закони геометричної оптики; оптична лінза і її властивості; побудова зображень в оптичній лінзі; оптичні системи і їхні похибки.
Лабораторне завдання. 1. Зібрати схему, зазначену на рис. 6. Розмістити досліджувану лінзу на відстані 30 - 50 см від джерела випромінювання. 2. Переміщаючи екран вздовж оптичної лави домогтися максимально чіткого зображення джерела випромінювання на екрані. Виміряйте фокусну відстань. 3. Проведіть 7-10 вимірювань. Результати вимірювань занесіть у таблицю.
4. Визначите середнє значення фокусної відстані для проведеної групи вимірювань
(7)
5. Обчисліть середню квадратичну похибку проведених вимірювань за формулою:
(8)
6. Обчисліть оптичну силу лінзи за формулою:
(9)
Якщо та виміряються в метрах, то виміряється в діоптріях. 7. Помістити перед лінзою першу діафрагму, що закриває центральні промені. Домогтися максимального фокусування променів. Повторити вимірювання та обчислення описані в пп. 2-5. 8. Помістити перед лінзою другу діафрагму, що закриває периферійні промені. Повторити вимірювання та обчислення описані в пп. 2-5. 9. Визначити значення сферичної аберації лінзи (різниця середніх значень фокусних відстаней для обох діафрагм) і похибку її визначення (сума середньоквадратичних похибок, обчислених для першої та другої діафрагм). 10. У висновках до роботи вкажіть яке значення сферичної аберації виявлено в збірної оптичної лінзи, яка використовувалась в лабораторній роботі. Прилади та обладнання. У роботі використовуються: оптична лава, джерело світла, збірна лінза, набір діафрагм.
Література. 1. Савельев Н.В. Курс общей физики. М.:Наука. 1978.Т.2, 1979.Т.3. 2. Зисман Г.А., Тодес О.М. Курс общей физики. М.: ГИТТЛ. 1975. 3. Ландсберг Г.С. Оптика М.: ГИТТЛ. 1975. 4. Яворский Б.М., Детлаф А.А. Курс общей физики. М.: Вища школа, 1979. 5. Кортнев А.Б. Практикум по физике. М.: Вища школа. 1967.
Лабораторне заняття № 3
Вимірювання довжини хвилі джерела світла за допомогою дифракційної гратки
Мета роботи. Дослідити явище дифракції світла та визначити довжину хвилі джерела світла за допомогою дифракційної гратки.
Теоретичні відомості. Дифракція — фізичне явище, пов’язане з непрямолінійним розповсюдженням хвиль, огинанням ними перешкод і проникненням хвилі в область геометричної тіні Дифракцією називаються явища, зумовлені хвильовою природою світла, що спостерігаються при розповсюдженні світла в середовищі з різко вираженими неоднорідностями. Наприклад, у випадках, коли на шляху світла виникають отвори в непрозорих екранах, непрозорі тіла і т.д. Світло – це електромагнітні хвилі з частотами в діапазоні . Оскільки у вакуумі швидкість світла однакова для всіх частот, то довжина хвилі у вакуумі лежить в діапазоні . Відзначимо, що Від частоти світла залежить його колір. Так, наприклад, при світлова хвиля, яка сприймається оком, здається червоного кольору. З іншої сторони хвиля з частотою здається фіолетовою. Частотний (колірний) склад світла називають спектром, а розділення в просторі цих частот (кольорів, довжин хвиль) називають розкладання світла в спектр. Дифракційною граткою називається перешкода з багатьма щілинами. Одномірна дифракційна гратка являє собою систему, що складається з великого числа однакових по ширині і паралельних одна одній щілин, розділених однаковими по ширині непрозорими проміжками. В роботі використовуються гратка, яка являє собою періодичну послідовність (чергування) щілин шириною b, розділених непрозорими смугами шириною a (рис. 1), розташованих в одній площині. Періодом (постійною) гратки називається величина , рівна відстані між центральними лініями О1 і О2 сусідніх щілин. Непрозорі щілини настільки вузькі, що неозброєним оком їх практично не видно. Загальна картина розповсюдження світла через гратку показана на рис. 2. Гратка опромінюється потоком паралельних променів, перпендикулярних площини гратки. Це відповідає падінню на гратку плоскої хвилі.
Рис. 1. Рис. 2.
За граткою, в ближній області I, розповсюдження світла приблизно відповідає законам геометричної оптики, а дифракція мало помітна. Тут проміння проходить крізь щілини по первинній прямій, за смугами появляються тіні. В проміжній області II дифракція проявляється сильніше, але зберігаються і риси прямолінійного руху падаючих променів. В дальній області III світло розходиться віялоподібно, створюючи неоднорідні потоки світла з чергуванням максимальної і мінімальної інтенсивності світла. Ці максимуми і мінімуми називаються дифракційними. В області III зовсім не зберігається первинний прямолінійний рух променів, що пройшли безперешкодно через щілини. Тут промені відхилились від первинної траєкторії і створили нові світлові потоки. Отже, закони геометричної оптики для розповсюдження світла для цієї області застосувати неможливо, в цій області розповсюдження світла зумовлене хвильовими законами – дифракцією. Кутом дифракції називають кут φ відхилення променя від первинного напрямку. Дифракційним максимумом називають світлові максимуми, викликані дифракцією. Розрахунки показують, що область III з яскраво вираженою дифракцією за перешкодою лежить на відстані , де D – поперечний розмір перешкоди в світловому потоці. В гратці з шириною щілини м при довжині хвилі λ=500 нм дифракція від щілини очевидно помітна на відстанях, які більші за 0,2 м. Цей приклад показує, що для спостереження дифракції важливе співвідношення розміру перешкоди і довжини хвилі. Щоб спостерігати дифракцію світлових хвиль поблизу гратки, потрібно вибирати гратки з малим періодом d. Якщо відоме місце знаходження фронту хвилі, швидкість хвилі υ в деякий момент часу t, то місце знаходження фронту в наступний момент часу можна визначити на основі принципу Гюйгенса. Згідно цього принципу всі точки поверхні , через які проходить фронт хвилі у момент часу t, потрібно розглядати як джерела вторинних хвиль, а шукане положення фронту в момент часу співпадає з поверхнею, яка огинає всі вторинні хвилі. При цьому вважається, що в однорідному середовищі вторинні хвилі випромінюються тільки вперед, тобто в напрямах, які складають гострі кути з зовнішньою нормаллю до фронту хвилі. Принцип Гюйгенса є чисто геометричним. Він не вказує способу розрахунку амплітуди хвилі, що огинає вторинні хвилі. Через це принцип Гюйгенса не підходить для розрахунку закономірностей розповсюдження світлових хвиль. Наближений метод вирішення цієї задачі, що є розвитком принципу Гюйгенса, на основі запропонованої Френелем ідеї про когерентність вторинних хвиль та їх інтерференції при накладанні, називається принципом Гюйгенса-Френеля. Цей принцип можна виразити у вигляді ряду положень: • при розрахунку амплітуди світлових коливань, збуджуючих джерелом в довільній точці М, джерело можна замінити еквівалентною йому системою вторинних джерел — малих ділянок ds будь-якої замкнутої допоміжної поверхні S, проведеної так, щоб вона охоплювала джерело і не охоплювала дану точку М; • вторинні джерела когерентні між собою, через це збуджуючі ними вторинні хвилі інтерферують при накладанні; розрахунок інтерференції найбільш простий, якщо S — хвильова поверхня для світла джерела , оскільки при цьому фази коливань всіх вторинних джерел однакові; • амплітуда dA коливань, збуджених в точці М вторинних джерел, пропорційна відношенню площі ds відповідної ділянки хвильової поверхні S до відстані r від нього до точки М і залежить від кута α між зовнішньою нормаллю до хвильової поверхні і напрямом від елемента ds до точки М:
, (1)
де а — величина, пропорційна амплітуді первинної хвилі в точках елемента ds; ƒ(а) монотонно зменшується від 1 при а = 0, до 0 при . Вторинні джерела не випромінюють назад. • якщо частина поверхні S зайнята непрозорими екранами, то відповідні (закриті екранами) вторинні джерела не випромінюють, а інші випромінюють так само, як у відсутність екранів. Падаючу хвилю прийнято називати первинною, а хвилі, які випромінюються точками – вторинними. В точці випромінювання вторинні хвилі мають ту ж частоту і фазу, що і первинна хвиля. Через це вторинні хвилі у вакуумі представляють собою сферичні хвилі, які розходяться з точки випромінювання. Нагадаємо, що промінь представляє собою уявну лінію, вздовж якої розповсюджується хвиля. Промінь перпендикулярний хвильовій поверхні, тому плоска хвиля зображується набором паралельних променів, а сферична – променів, які радіально розходяться із центра сфери. В точці перетину променів відповідні їм хвилі інтерферують (додаються). Нехай в дифракційній гратці є N щілин. Для спрощення кожну щілину гратки представимо однією точкою в просторі. Саме ці і - ті точки будуть випромінювати вторинні хвилі під впливом падаючої хвилі. Зрозуміло, що непрозорі смуги вторинні хвилі не випромінюють. Запишемо напруженість електричного поля вторинної хвилі, що випромінюється і - тою щілиною
(2)
де - миттєве значення напруженості поля в точці спостереження М в момент часу t, - амплітуда напруженості поля в точці спостереження, ω – циклічна частота, - хвильове число, ri – відстань від і - ої щілини до точки спостереження, αі – початкова фаза коливань. Якщо первинна хвиля падає перпендикулярно до поверхні дифракційної гратки, то коливання хвильового фронту в щілинах синфазні, . За принципом Гюйгенса-Френеля поле Е в точці спостереження буде представляти собою суму електричного поля вторинної хвилі, випромінюваної і - тою щілиною
. (3)
Дана сума представляє собою додавання коливань вздовж однієї прямої, через це результуюча хвиля матиме вигляд
. (4)
Тут – амплітуда в точці спостереження, – відстань до центра гратки О, – початкова фаза коливань. На практиці вимірюють і спостерігають не величину напруженості електричного поля хвилі Е(t), а інтенсивність хвилі, яка визначається із співвідношення:
(5)
де - магнітна постійна, а - електрична постійна. В загальному випадку аналітичний вираз для (5) з врахуванням (3) має достатньо складний вигляд. Набагато легше отримати вираз для (5), в дальній області, де перетинаються вторинні промені, майже паралельні один одному (на рис. 3 точка М).
Рис. 3. Рис. 4.
За граткою можна поставити збірну лінзу, в результаті чого падаючі на лінзу паралельні вторинні проміння перетнуться у фокальній площині за лінзою (рис. 4). Не вдаючись в математичні деталі, для дифракції в паралельних (вторинних) променях на дифракційних гратках можна отримати наступну залежність інтенсивності І світлової хвилі від кута дифракції φ.
, (6)
де - значення інтенсивності світла при φ=0. Графік цієї залежності показаний на рис. 5. Кут дифракції φ відраховується від напряму падаючого променя. Цьому куту на відстані L відповідають координати вертикального відхилення . Картину дифракції можна спостерігати на екрані Е, площина якого паралельна площині гратки. Для залежності І(φ) характерним є чергування головних дифракційних максимумів (великих по амплітуді) і побічних дифракційних максимумів (малих по амплітуді). Аналіз виразу (6) дає наступну умову для головних максимумів
(7)
де - кут дифракції m – го максимуму, m – число, яке називається порядком головного максимуму.
Рис. 5. Рис. 6.
Дослідження кутів, при яких І = 0, дає кут між сусідніми нулями І(φ). Ця величина називається кутовою шириною максимуму і дорівнює
. (8)
Умова головних максимумів пояснюється синфазним додаванням в точці спостереження хвиль від усіх щілин. Дійсно, із рис. 4 видно, що різниця ходу паралельних променів із сусідніх щілин . Це викликає різницю фаз в точці перетину променів (9)
При різниці фаз коливання синфазні і при додаванні дають найбільшу амплітуду. Іншими словами це наступає при . Після скорочення на 2π отримаємо умову головних максимумів (7). Якщо ж в точці спостереження хвилі двох сусідніх щілин протилежні по фазі , то при додаванні такі хвилі гасять одна одну, створюючи нульову інтенсивність, тобто дифракційний мінімум. Більш детальний аналіз виразу (6) показує існування інших максимумів і мінімумів, створюваних додаванням хвиль від великої кількості щілин. Детальніше ці питання викладенні в рекомендованих посібниках. Умова головних максимумів (7) дозволяє визначити довжину хвилі джерела світла
(10)
Для цього потрібно навести на дифракційну решітку потік нормально падаючих променів (рис. 4) і на екрані Е, площина якого паралельна площині гратки, отримаємо дифракційну картину. Виміривши відстань між центральним (m = 0) і m – тим головним максимумом і відстань L між екраном і граткою, отримаємо
(11)
Значення періоду гратки складає . За відомим значенням d і виміряним значенням L і , з умови головних максимумів отримаємо розрахункову формулу
(12)
де m – порядок головного максимуму для . Якщо падаюче світло складається з набору хвиль різної довжини, то різні хвилі відхиляються на різні кути:
(13)
Через це в дифракційних максимумах з падаюче світло розкладається в спектр.
|
||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 194; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.85.108 (0.011 с.) |