Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Критерии оценки степени загрязнения подземных вод в зоне влиянияСодержание книги
Поиск на нашем сайте
Хозяйственных объектов
(Критерии оценки экологической обстановки территорий для выявления зон чрезвычайной экологической ситуации и зон экологического бедствия, утвержденные Минприроды России 30 ноября 1992 г.)
* ПДК - санитарно-гигиенические
4.41 Лабораторные химико-аналитические исследования должны выполняться в соответствии с унифицированными методиками и государственными стандартами ГОСТ 17.1.3.07-82; ГОСТ 17.1.3.08-82; ГОСТ 2874-82; ГОСТ 17.1.4.01-80; ГОСТ 17.4.3.03-85. Допускается экспериментальное использование апробированных на практике новых методов при соответствующем обосновании в программе работ. 4.42 Набор анализируемых компонентов устанавливается техническим заданием в зависимости от вида строительства, стадии изысканий и предполагаемого состава загрязнителей с учетом вида деятельности, вызывающей загрязнение. В перечень определяемых химических элементов и соединений входят: тяжелые металлы, мышьяк, фтор, бром, сера, аммоний, цианиды, фосфаты, ароматические соединения (бензол, толуол, ксилол, фенолы), полициклические углеводороды (бенз(а)пирен), хлорированные углеводороды (алифатические, полихлорбифенилы, полиароматические), хлорорганические и фосфорорганические соединения (пестициды), нефть и нефтепродукты, минеральные масла. 4.43 Все химико-аналитические исследования должны проводиться в лабораториях, прошедших государственную аттестацию и получивших соответствующий сертификат (лицензию). 4.44 Исследование и оценка радиационной обстановки в составе инженерно-экологических изысканий для строительства выполняются на основании Федерального Закона “О радиационной безопасности населения”, 1995 г. и Закона РСФСР “О санитарно-эпидемиологическом благополучии населения”, 1992 г., в соответствии с нормами радиационной безопасности НРБ-96 (ГН 2.6.1.054-96) и основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений (ОСП-72/87), а также ведомственными нормативно-методическими и инструктивными документами Минздрава и Госкомприроды России, Министерства природных ресурсов Российской Федерации и Росгидромета. Основные определения, обозначения и единицы измерения физических и дозиметрических величин приведены в приложении 3. Соотношения между единицами международной системы СИ и внесистемными единицами, подлежащими изъятию из обращения, приведены в приложении И.
4.45 Радиационно-экологические исследования должны включать: оценку гамма-фона на территории строительства; определение радиационных характеристик источников водоснабжения; оценку радоноопасности территории. 4.46 Основными источниками радиоактивного загрязнения окружающей среды служат ядерно-технические установки, предприятия, работающие с радионуклидами, хранилища радиоактивных отходов, следы ядерных взрывов и др. Радиоактивными загрязнителями являются техногенные радионуклиды (ТРН), аккумулирующиеся на участках захоронений, санкционированных и несанкционированных свалок, аварий, неконтролируемых протечек и газоаэрозольных выбросов, поступающие в почвы, грунты и грунтовые воды непосредственно на территории строительства или в процессе миграции с прилегающих территорий. Радионуклидный состав загрязнений грунтов зависит от источника загрязнений, способа их поступления в грунты (поверхностное, с грунтовыми водами, из подземных захоронений) и сорбционных свойств грунтов. Глубина проникновения радионуклидов с поверхности на легких грунтах — до 50-100 см; основное количество техногенных радионуклидов сосредоточено в верхнем 10-сантиметровом слое почвы. 4.47 Степень радиоэкологической безопасности человека, проживающего на загрязненной территории, определяется годовой эффективной дозой радиоактивного облучения от природных и техногенных источников. При этом доза от техногенных источников согласно НРБ-96 не должна превышать 1 мЗв/год (или 0.1 бэр/год) в среднем за любые последовательные 5 лет, что соответствует рекомендации Международной комиссии по радиологической медицине. Территории, в пределах которых среднегодовые значения эффективной дозы облучения (сверх естественного фона) находятся в диапазоне 5-10 мЗв/год, необходимо относить к территориям чрезвычайной экологической ситуации, а более 10 мЗв/год — к зонам экологического бедствия.
Нормальный естественный уровень мощности эквивалентной дозы (МЭД) внешнего гамма-излучения на открытых территориях в средней полосе России составляет от 0.1 до 0.2 мкЗв/час, а в отдельных, например, в предгорных и горных районах — до 0.3 мкЗв/час. При локальных загрязнениях критерии вмешательства при облучениях, дополнительных к естественному фону, принимаются в соответствии с НРБ — 96, приложение П-5. 4.48 Предварительная оценка радиационной обстановки при инженерно-экологических изысканиях должна проводиться по данным специальных служб Росгидромета, осуществляющих общий контроль за радиоактивным загрязнением окружающей среды, а также по материалам центров санитарно-эпидемиологического надзора Минздрава России и территориальных подразделений специально уполномоченных государственных органов в области охраны окружающей среды, осуществляющих контроль за уровнем радиационной безопасности населения. 4.49 Для выявления и оценки опасности источников внешнего гамма-излучения проводятся: — радиационная съемка (определение мощности эквивалентной дозы внешнего гамма-излучения); — радиометрическое опробование с последующим гамма-спектрометрическим или радиохимическим анализом проб в лаборатории (определение радионуклидного состава загрязнений и их активности). 4.50 Маршрутную гамма-съемку территории следует проводить с одновременным использованием поисковых гамма-радиометров и дозиметров. Поисковые радиометры используются в режиме прослушивания звукового сигнала для обнаружения зон с повышенным гамма-фоном. При этом территория должна быть подвергнута, по возможности, сплошному прослушиванию при перемещениях радиометра по прямолинейным или Z — образным маршрутам. Дозиметры используются для измерения МЭД внешнего гамма-излучения в контрольных точках по сетке, шаг которой определяется в зависимости от масштаба съемки и местных условий. Измерения проводятся на высоте 0,1 м над поверхностью почвы, а также в скважинах, вскрывающих насыпные грунты. 4.51 Усредненное, характерное для данной территории числовое значение МЭД, обусловленной естественным фоном; устанавливается местными органами санэпиднадзора. Участки, на которых фактический уровень МЭД превышает обусловленный естественным гамма-фоном, рассматриваются как аномальные. В зонах выявленных аномалий гамма-фона интервалы между контрольными точками должны последовательно сокращаться до размера, необходимого для оконтуривания зон с уровнем МЭД > 0.3 мкЗв/час. На таких участках с целью оценки величины годовой эффективной дозы должны быть определены удельные активности техногенных радионуклидов в почве и по согласованию с органами Госсанэпиднадзора решен вопрос о необходимости проведения дополнительных исследований или дезактивационных мероприятий. Масштабы и характер защитных мероприятий определяются с учетом интенсивности радиационного воздействия загрязнений на население.
4.52 Все результаты измерений следует заносить в полевые журналы и наносить на карту (схему) распределения мощности доз гамма-излучения, с привязкой контрольных точек к топографическому плану местности. 4.53 Объектами радиометрического опробования должны служить почвы и грунты различных типов ландшафтов, поверхностные и подземные воды (в первую очередь, в зоне действующих водозаборов), донные осадки водоемов и техногенные объекты (карьеры, терриконы, свалки, полигоны промышленных и бытовых отходов, склады строительных материалов, а также консервируемые объекты с повышенной радиоактивностью). 4.54 Отбор проб почв и грунтов производится специальными пробоотборниками, соответствующими необходимой глубине отбора. Исследование вертикального загрязнения почв и грунтов производится послойно, лабораторным методом по ГОСТ 30108-94. Отбор проб воды производится с помощью погружного вибронасоса или шланговым пробоотборником типа “Спрут” с одновременным концентрированном радионуклидов и их извлечением с помощью различных сорбентов. Отбор и обработка проб и определение изотопного состава и концентраций радионуклидов должны производиться в соответствии с установленными методиками Росгидромета и Минздрава России в лабораториях, имеющих лицензии на производство соответствующих работ. 4.55 Методика отбора проб при радиационном обследовании подворий, а также объем и порядок радиационного контроля для оценки внутреннего облучения и определения радионуклидов в атмосферном воздухе должны приниматься в соответствии с “Методическими рекомендациями по оценке радиационной обстановки в населенных пунктах”, утвержденными Минздравом России и Росгидрометом (1990 г.), “Инструкцией по измерению гамма-фона в городах и населенных пунктах” Минздрава СССР № 3255 от 09.04.85 г., а также “Инструкцией и методическими указаниями по оценке радиационной обстановки на загрязненных территориях” Межведомственной комиссии по радиационному контролю природной среды (1989 г.). 4.56 Принятие решений по ограничению облучения населения от природных и техногенных источников ионизирующего излучения при обращении с почвами, грунтами, твердыми строительными, промышленными и другими отходами, содержащими гамма-излучающие радионуклиды, должно осуществляться в соответствии с НРБ-96. 4.57 Источники водоснабжения классифицируются как радиационно-безопасные, если удельные активности радионуклидов в воде не превышают пределов, указанных в п.п. 7.2.4, 7.3.6 и приложении П-2 НРБ-96 (ГН 2.6.1.054-96).
4.58 Радоноопасность территории определяется плотностью потока радона с поверхности грунта и содержанием радона в воздухе построенных зданий и сооружений. Оценка потенциальной радоноопасности территории осуществляется по комплексу геологических и геофизических признаков. К геологическим признакам относятся: наличие определенных петрографических типов пород, разрывных нарушений, сейсмическая активность территории, присутствие радона в подземных водах и выходы радоновых источников на поверхность. Геофизические признаки включают: высокую удельную активность радия в породах, слагающих геологический разрез; уровни объемной активности ОА радона (концентрация) в почвенном воздухе, ЭРОА радона в зданиях и сооружениях, эксплуатируемых на исследуемой территории и в прилегающей зоне. Наличие данных о зарегистрированных значениях эквивалентной равновесной объемной активности (ЭРОА) радона, превышающих 100 Бк/м3, в эксплуатируемых в исследуемом районе зданиях служит основанием для классификации территории как потенциально радоноопасной. 4.59 На предпроектных стадиях должна быть выполнена предварительная оценка потенциальной радоноопасности территории. На стадии проекта производится уточнение радоноопасности площадки и определение класса требуемой противорадоновой защиты зданий. 4.60 Все результаты обработки измерений физических характеристик среды, определяющих радиационно-экологическую обстановку, должны заноситься в банки данных территориальных изыскательских организаций, территориальных подразделений специально уполномоченных государственных органов в области охраны окружающей среды Государственного комитета Российской Федерации по охране окружающей среды и органов санитарно-эпидемиологического надзора Минздрава России. 4.61 Газогеохимические исследования в составе инженерно-экологических изысканий необходимо выполнять на участках распространения насыпных грунтов с примесью строительного, промышленного мусора и бытовых отходов (участках несанкционированных бытовых свалок) мощностью более 2.0-2.5 м, использование которых для строительства требует проведения работ по рекультивации территории. 4.62 Основная опасность использования насыпных грунтов в качестве основании сооружений связана с их способностью генерировать биогаз, состоящий из горючих и токсичных компонентов. Главными из них являются метан (до 40-60 % объема) и двуокись углерода; в качестве примесей присутствуют: тяжелые углеводородные газы, окислы азота, аммиак, угарный газ, сероводород, молекулярный водород и др. Биогаз образуется при разложении “бытовой” органики в результате жизнедеятельности анаэробной микрофлоры в грунтовой толще на глубине более 2.0-2.5 м. В верхних аэрируемых слоях грунтовых толщ происходит аэробное окисление органики и продуктов биогазообразования. Биогаз сорбируется вмещающими насыпными грунтами и отложениями естественного генезиса, растворяется в грунтовых водах и верховодке и диссипирует в приземную атмосферу.
4.63 При строительстве на насыпных грунтах возникает опасность накопления биогаза в технических подпольях зданий и инженерных коммуникациях до пожаро-, взрывоопасных концентраций по метану (5-15% при О2 12.1%)1 или до токсичных содержаний (выше ПДК) отдельных компонентов. _______________ ' Здесь и далее концентрации газа приведены в объемных процентах
Потенциально опасными в газогеохимическом отношении считаются грунты с содержанием метана > 0.1% и СО2 > 0.5%; в опасных грунтах содержание метана > 1.0% и СО2 до 10%; пожаровзрывоопасные грунты содержат метана > 5.0%, при этом содержание СО2 - n·10 %. 4.64 Для оценки степени газогеохимической опасности насыпных грунтов, определения возможности и условий использования данной территории для строительства, а также для разработки системы мер защиты зданий от биогаза и обеспечения экологически благоприятных условий проживания населения проводятся: различные виды поверхностных газовых съемок (шпуровая, эмиссионная), сопровождающиеся отбором проб грунтового воздуха и приземной атмосферы; скважинные газогеохимические исследования (с послойным отбором проб грунтового воздуха, грунтов, подземных вод); лабораторные исследования компонентного состава свободного грунтового воздуха, газовой фазы грунтов, растворенных газов и биогаза, диссипирующего в приземную атмосферу. 4.65 На основе изучения поверхностной и глубинной структуры газового поля следует проводить газогеохимическое районирование территории — выделение в грунтовом массиве зон разной степени опасности. Экологически опасные зоны (при содержании СН4 > 1.0% и СO2 > 10%), из которых грунты полностью удаляются с территории строительства и заменяются на газогеохимически инертные, а также потенциально опасные зоны, в которых здания и инженерные сети обустраиваются газодренажными системами или газонепроницаемыми экранами, должны быть показаны на картах и разрезах. 4.66 Исследование вредных физических воздействий (электромагнитного излучения, шума, вибрации, тепловых полей и др.) должно осуществляться в первую очередь при разработке градостроительной документации и проектировании жилищного строительства на освоенных территориях. При этом должны быть зафиксированы основные источники вредного воздействия, его интенсивность и выявлены зоны дискомфорта с превышением допустимого уровня вредного физического воздействия. 4.67 Для предварительной оценки вредных физических воздействий следует использовать материалы территориальных подразделений специально уполномоченных государственных органов в области охраны окружающей среды и центров санитарно-эпидемиологического надзора Минздрава России. Для непосредственной оценки физических воздействий в составе инженерно-экологических изысканий следует производить специальное измерение компонент электромагнитного поля в различных диапазонах частот, амплитудного уровня и частотного состава вибраций от различных промышленных, транспортных и бытовых источников, шумов и др. силами самой изыскательской организации (при наличии соответствующих лицензий и сертифицированных технических средств) или привлекать специализированные организации, имеющие лицензии на право проведения таких работ и сертификаты на технические средства контроля физических воздействий на окружающую среду и здоровье людей. 4.68 Оценка воздействия электромагнитного излучения на организм человека включает оценку воздействия электрического и магнитного полей, создаваемых высоковольтными линиями электропередачи переменного тока промышленной частоты (ЛЭП), а также высоковольтными установками постоянного тока (электростатическое поле) для электромагнитных полей радиочастот, включая метровый и дециметровый диапазоны волн телевизионных станций. 4.69 Предельно допустимые уровни (ПДУ) напряженности электрических полей промышленной частоты (50 Гц), установленные ГОСТ 12.1.002-84 и СанПиН 2971-84, представлены в таблице 4.5.
Таблица 4.5
|
|||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 382; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.153.232 (0.014 с.) |