Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Перспективы нетрадиционной энергетики

Поиск

 

Как отмечалось, эксперты МИРЭС возлагают большие надежды на развитие нетрадиционной энергетики на основе новых ВИЭ (солнце, ветер, тепло Земли, приливы и отливы, энергия малых водотоков и т.д.). Меры содействия развитию нетрадиционной энергетики – объект пристального внимания мирового сообщества (см. 11.3.1)

Рассмотрим перспективы различных вариантов нетрадиционной энергетики.

 

Гелиоэнергетика

 

Получение электрической или тепловой энергии за счет солнечной энергии – одно из самых перспективных направлений нетрадиционной энергетики. По наиболее оптимистичным прогнозам к 2020 г. эта отрасль будет давать от 5 до 25% мирового производства энергии.

Основные технические решения. Различают два основных варианта гелиоэнергетики: физический и биологический. При физическом варианте энергия аккумулируется солнечными коллекторами, солнечными элементами на полупроводниках или концентрируется системой зеркал. Исследования по гелиоэнергетике частично финансируются Всемирным банком по программе «Солнечная инициатива».

Солнечные коллекторы широко применяются в Японии, Израиле, Турции, Греции, на Кипре, в Египте для нагревания воды и отопления. В Германии успешно осуществлен проект «2000 солнечных крыш», в США солнечные нагреватели установлены в 1,5 млн. домов (их общая мощность равна 1400 МВт). Ряд предприятий РФ изготовляют несколько типов солнечных сушилок для сельскохозяйственных продуктов, которые позволяют сократить затраты энергии на единицу сухого продукта на 40%. Выпускаются в РФ и усовершенствованные плоские солнечные коллекторы и комплексные водонагревательные установки.

Энергия, получаемая на солнечных электростанциях (СЭС) с использованием системы зеркал, которые нагревают масло в трубах, в 5–7 раз дешевле, чем энергия солнечных элементов, т.е. фотоэлектрических преобразователей (ФЭП). Для изготовления ФЭП необходим химически чистый кремний. Дороговизна его производства является основным тормозом их широкого внедрения. Тем не менее, у ФЭП большие перспективы: 1 кг кремния заменяет 75 т нефти, хотя пока ФЭП широко используются только в космических аппаратах.

В США наиболее популярны гибридные солнечно-топливные электростанции (их КПД составляет 13,9%), суммарная мощность которых равна 400 МВт. Их средний КПД выше (достигает 23%), а стоимость энергии ниже, т.к. вырабатываются одновременно энергия и тепло. Во всех этих СЭС используются стеклянные концентраторы в форме параболических цилиндров высотой до 100 м и апертурой около 6 м. Ресурс работ этих концентраторов составляет 30 лет. Если бы Россия располагала подобными системами концентрации излучения, можно было бы за счет СЭС полностью обеспечить энергией южные районы страны (Емельянов, 2001).

В рамках развития физических вариантов гелиоэнергетики идет разработка моделей солнцемобилей. Пока эти транспортные средства проходят стадии экспериментальных образцов, тем не менее, в Японии регулярно проводят их ралли, в которых участвуют и российские создатели нового транспорта. Стоимость моделей-чемпионов пока в 10–15 раз выше, чем стоимость самого престижного автомобиля. Недостатком солнцемобилей являются большие размеры солнечных элементов, а также зависимость от погоды (солнцемобиль снабжается аккумулятором на случаи, когда солнце скрыто за облаками).

Ограничения физической гелиоэнергетики. Недостатком СЭС являются лишь очень большие затраты металла на их сооружение: в пересчете на единицу производимой энергии они в 10-12 раз выше, чем при производстве энергии на ТЭС или АЭС. Затраты цемента при этом еще выше – в 50-70 раз. СЭС занимают большие площади, и потому их строительство перспективно только в пустынях. Так, к югу от Лос-Анджелеса построена СЭС мощностью 80 МВт, причем затраты на ее строительство быстро окупились, получаемая энергия на 1/3 дешевле, чем энергия, вырабатываемая на АЭС. Есть проекты сооружения СЭС в пустынях Гоби и Сахаре с использованием водорода в качестве энергоносителя.

Поскольку строительство СЭС экономически рентабельно в случае, если число часов солнечного сияния не ниже 2000 в год, а интенсивность поступления солнечного света составляет 600-800 Вт/м2, в условиях РФ возможно строительство СЭС лишь в некоторых районах (Астраханская, Волгоградская и Ростовская области, Ставрополье, Калмыкия, Северный Кавказ, Читинская область, Бурятия, Тува).

Использование солнечных элементов сдерживается отсутствием рентабельной технологии получения химически чистого кремния, который пока стоит столько же, сколько и уран для АЭС. Однако работы по созданию технологии получения более дешевого кремния проводятся в ряде стран мира (особенно в Германии и Норвегии). Поскольку 1 кг кремния в солнечном элементе вырабатывает за 30 лет 300 тыс. кВт-часов электроэнергии, он эквивалентен 75 т нефти, так что прорыв в технологии получения кремния способен резко повысить вклад солнечной энергии в энергетический бюджет мира. Тем не менее, количество фотоэлектрических модулей, которые производятся в мире, быстро увеличивается. Ели в 1995 г. их суммарная мощность составляла 80 МВт, то в 2000 – уже 260, а в 2010 по прогнозам должна достигнуть 1700 МВт.

Возможности биологической гелиоэнергетики. При биологическом варианте гелиоэнергетики используется солнечная энергия, накопленная в процессе фотосинтеза в органическом веществе растений (обычно в древесине). Количество диоксида углерода, которое выделяется при сжигании растительной массы, равно его усвоению при росте растений (так называемые «суммарные нулевые выбросы»).

По сей день 55% древесины, которая используется человеком, – это топливо, причем, в странах третьего мира древесина сжигается в очагах для приготовления пищи и обогрева помещений. Это «установки» с самым низким КПД, который не превышает 10%. В Кении за счет этих «установок» удовлетворяется 75% энергетических потребностей, в Эфиопии и Бангладеш – 90%, в Нигерии – 80% (Дрейер, Лось, 1997).

Значительно более высоким КПД обладают ТЭС, где в результате сжигания древесины получается электроэнергия. Австрия планирует в ближайшие годы получать от сжигания древесины до 1/3 необходимой ей электроэнергии. Для этих же целей в Великобритании планируется засадить лесом около 1 млн. га земель, непригодных для сельскохозяйственного использования. Высаживаются быстрорастущие породы, такие, как тополь, срезку которого производят уже через 3 года после посадки (высота деревьев около 4 м, диаметр стволиков больше 6 см). В Бразилии из отходов сахарного тростника получают этиловый спирт, который используют в качестве топлива; в США работают электростанции, сжигающие отходы кукурузы.

Американская компания «Дженерал электрик» использует биомассу быстро растущих бурых водорослей (ежедневно с 1 га таких плантаций получается энергия, эквивалентная энергии 28 л бензина). Используется также планктонная микроскопическая водоросль спирулина, способная дать с 1 га до 24 т сухого вещества в год. В этом случае организуется замкнутая система производства энергии: зола после сжигания водорослей поступает в бассейн для многократного использования, что снижает расход элементов минерального питания.

Биологическим вариантом гелиоэнергетики является получение биогаза из органических остатков, в первую очередь навоза. Несложные установки для получения биогаза широко распространены в Китае и Индии. Уже в 80-х гг. в Индии действовало 50 тысяч таких установок.

Этот же вариант энергетики представляет получение швельгаза, который образуется при термической обработке (пиролизе) органических бытовых отходов в специальных установках, где они в анаэробных условиях нагреваются до температуры 400-700оС. (В этом случае затрачивается некоторое количество тепловой энергии из традиционных источников.)

В мире есть опыт утилизации «свалочного» газа, который образуется в результате гниения органических отходов на свалках. Для этого в толщу свалок пробуриваются скважины. В России совместно с голландской компанией «Гронтмай» испытаны две экспериментальные установки для получения «свалочного» газа. Мощность этих установок – 70-80 кВт. Опыт показал, что на средних по размеру полигонах можно получать 3500-4400 МВт в год. На крупных полигонах можно получать энергии еще больше.

 

Контрольные вопросы

1. Перечислите основные варианты гелиоэнергетики.

2. В каких условиях недостатки СЭС могут быть сведены к минимуму?

3. Что такое солнечные элементы? Почему задерживается широкое использование этих элементов в энергетике?

4. Каковы перспективы развития биологического варианта гелиоэнергетики?

 

Ветроэнергетика

 

Это один из наиболее развитых и перспективных вариантов нетрадиционной энергетики, при котором используется экологически чистый и неисчерпаемый источник энергии – ветер.

В настоящее время наибольшего развития ветроэнергетика достигла в Германии, Англии, Голландии, Дании, США (только в штате Калифорния работает 15 тыс. ветряков). Наиболее оправданны небольшие ветряные энергетические установки (ВЭУ) мощностью до 15 кВт, хотя сооружаются и установки мощностью 100-500 кВт. Обычно на одной площадке устанавливается большое число ВЭУ, образующих так называемую ветровую ферму. Самая большая ферма сооружена в Калифорнии и состоит из почти 1000 ВЭУ, ее общая мощность 100 МВт.

Попытки сооружения «ветряных монстров» на суше (в устье Эльбы была построена ВЭУ «Гровиан» мощностью 3 МВт, а в штате Огайо в США – мощностью 10 МВт) оказались неудачными, так как эти установки вызывают сильное шумовое загрязнение на больших территориях, примыкающих к ВЭУ. ВЭУ в Огайо проработала несколько суток и была демонтирована и продана как металлолом. Тем не менее, при выносе в море оказываются выгодными мощные ВЭУ. В целом по морским ВЭУ пока лидирует Дания. Лидерство же в разработке проектов принадлежит ФРГ, где разработан проект морской ВЭУ с диаметром ротора 100 м и мощностью 5 МВт.

Небольшие ВЭУ – идеальные источники энергии для ферм. Они могут быть подключены к центральной системе энергоснабжения, дающей ферме энергию в период безветрия и, напротив, принимающей излишки энергии от ВЭУ в особо ветреную погоду. Удобны небольшие ветряки для дачных участков. По прогнозам футурологов, в некоторых странах доля электроэнергии, получаемой на ВЭУ, в будущем может составить 10%. Однако для того, чтобы увеличить вклад ВЭУ в энергетический баланс развитого государства, необходимо примерно вдвое увеличить производство алюминия для ветряных «колес» и башен. А производство алюминия является одним из наиболее экологически грязных процессов.

Оборудование для получения энергии из нетрадиционных источников выпускают более 100 предприятий России. В 1998 г. в стране было произведено 120 ВЭУ мощностью 0,04-16 кВт для выработки электроэнергии и 10 водоподъемных ветроустановок, 500 м2 солнечных коллекторов и водонагревателей, 40 микроГЭС мощностью от 4 до 100 кВт, 40 биогазовых установок. Кроме того, по линии международного сотрудничества из США получено 30 ВЭУ мощностью по 10 кВт и 10 – по 1,5 кВт. Эти ВЭУ монтируются на севере – в Архангельской и Мурманской областях и на Чукотке.

Тем не менее, по мощности ВЭУ Россия отстала от развитых стран Запада и даже Индии на несколько порядков. Так, установленная мощность ВЭУ, подключенных к электрическим сетям в 2000 г. в некоторых странах мира составляла (в МВт): Германия – 6095, Испания – 2538, США – 2494, Дания – 2364, Индия – 1214. В России этот показатель – всего 5.

Бурный прогресс ветроэнергетики в мире отражается объемом продаж ВЭУ, который ежегодно возрастает на 30%.

 

Контрольные вопросы

1. Какие страны являются лидерами в использовании энергии ветра?

2. Какова оптимальная мощность ВЭУ?

3. Как представлена ветроэнергетика в РФ?



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 1205; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.233.83 (0.007 с.)