Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Диоптрическая система глаза.

Поиск

Орган обоняния.

Обонятельный анализатор представлен двумя системами — основной и вомероназальной, каждая из кот-ых имеет 3 части: периферическую (органы обоняния), промежуточную, состоящую из проводников (аксоны нейросенсорных обонятельных клеток и нервных клеток обонятельных луковиц), и центральную, локализующуюся в гиппокампе коры больших полушарий для основной обонятельной системы. Основной орган обоняния представлен ограниченным участком слизистой оболочки носа — обонятельной областью, покрывающей у человека верхнюю и отчасти среднюю раковины носовой полости и верхнюю часть носовой перегородки. Периферической частью вомероназальной, или дополнительной, обонятельной системы является вомероназальный (якобсонов) орган. Он имеет вид парных эпителиальных трубок, замкнутых с одного конца и открывающихся другим концом в полость носа. Кроме якобсонова органа, вомероназальная система выключает в себя вомероназальный нерв, терминальный нерв и собственное представительство в переднем мозге — добавочную обонятельную луковицу. Ф-ии вомероназальной системы связаны с ф-ми половых органов (регуляция полового цикла и сексуального поведения), и также связаны с эмоциональной сферой. Развитие. Органы обоняния имеют эктодермальное происхождение. Основной орган развивается из плакод -утолщений передней части эктодермы головы. Строение.

Рецепторные, или нейросенсорные, обонятельные клетки располагаются м/у поддерживающими эпителиоцитами и имеют короткий периферический отросток-дендрит и длинный – центральный-аксон. Их ядросодержащие части занимают, как правило, срединное положение в толще обонятельной выстилки.

Поддерживающие эпителиоциты формируют многорядный эпителиальный пласт, в котором и располагаются обонятельные клетки. На апикальной поверхности поддерживающих эпителиоцитов имеются многочисленные микроворсинки длиной до 4 мкм.

Базальные эпителиоциты находятся на базальной мембране и снабжены цитоплазматическими выростами, окружающими пучки аксонов обонятельных клеток. Цитоплазма их заполнена рибосомами и не содержит тонофибрилл.

 

Орган вкуса.

Представлен вкусовыми почками (луковицами), расположенными в толще эпителия листовидных, грибовидных, желобоватых сосочков языка. Источником развития клеток вкусовых почек является эмбриональный многослойный эпителий сосочков.

Вкусовая почка имеет овальную форму. Она состоит из плотно прилежащих друг к другу 40—60 клеток, среди которых различают 5 видов клеток: сенсоэпителиалъные («светлые» узкие и «светлые» цилиндрические), «темные» поддерживающие, базальные малодифференцированные, периферические.

1 .Вкусовые сенсорные эпителиоциты - вытянутые веретеновидные клетки; в цитоплазме имеются ЭПС агранулярноготипа, митохондрии. На апикальной поверхности эти клетки имеют микроворсинки с электронноплотным веществом в межворсинчатых пространствах. В составе электронноплотного вещества содержатся специфические рецепторные белки (сладкочувствительные, кислочувствительные и горькочувствительные) фиксированные одним концом к цитолемме микроворсинок.

2. Поддерживающие клетки - изогнутые веретеновидные клетки, окружают и поддерживают вкусовые сенсорные клетки. Отличаются наличием овального ядра с большим количеством гетерохроматина, расположенного в базальной части клетки. На вершине клеток имеются микроворсинки.

3. Базальные эпителиоциты - представляют собой малодифференцированные клетки, обеспечивающие регенерацию первых 2-х типов клеток вкусовой почки. Апикальные поверхности клеток вкусовой почки образуют вкусовую ямочку, которая открывается на поверхность эпителия сосочка вкусовой порой.

4. Периферические (перигеммальные) клетки имеют серповидную форму, содержат мало органелл, но в них много микротрубочек и нервных окончаний.

 

Диоптрическая система глаза.

Глаз - орган зрения, представляющий собой периферическую часть зрительного анализатора, в котором рецепторную ф-ию выполняют нейроны сетчатой оболочки. Светопреломляющий аппарат глаза (диоптрический) аппарат глаза (включает роговицу, хрусталик, стекловидное тело, жидкости передней и задней камер глаза)

Роговица занимает 1/16 площади фиброзной оболочки глаза и, выполняя защитную функцию, отличается высокой оптической гомогенностью, пропускает и преломляет световые лучи и является составной частью светопреломляющего аппарата глаза.

В роговице выделяют 5 слоев: 1) передний многослойный плоский неороговевающий эпителий; 2) переднюю пограничную мембрану (боуменову оболочку); 3) собственное вещество роговицы; 4) заднюю пограничную эластическую мембрану (десцеметову оболочку); 5) задний эпителий («эндотелий»). В роговице нет сосудов, много свободных нервных окончаний.

Хрусталик Это прозрачная двояковыпуклая линза, форма кот-ой меняется во время аккомодации глаза к видению близких или отдаленных объектов. Вместе с роговицей и стекловидным телом хрусталик составляет основную светопреломляющую среду. Хрусталик покрыт прозрачной капсулой толщиной 11—18 мкм. Его передняя стенка состоит из однослойного плоского эпителия хрусталика.

Стекловидное тело - это прозрачная желеобразная масса, заполняющая полость между хрусталиком и сетчаткой. На фиксированных препаратах стекловидное тело имеет сетчатое строение. На периферии оно более плотное, чем в центре. Стекловидное тело содержит белок витреин и гиалуроновую кислоту.

 

4. Аккомодационный аппарат глаза. (радужка, ресничное тело с ресничным пояском)

Радужка представляет собой дисковидное образование с отверстием изменчивой величины в центре – зрачком. Она является производным сосудистой (в основном) и сетчатой оболочек. Сзади радужка покрыта пигментным эпителием сетчатой оболочки. Расположена между роговицей и хрусталиком на границе между передней и задней камерами глаза. В радужке различают 5 слоев: передний эпителий, покрывающий переднюю поверхность радужки, наружный пограничный (бессосудистый) слой, сосудистый слой, внутренний пограничный слой и пигментный эпителий.

Ресничное тело является производным сосудистой и сетчатой оболочек. Выполняет ф-ию фиксации хрусталика и изменения его кривизны, тем самым участвуя в акте аккомодации. Имеет вид треугольника, кот-ый своим основанием обращен в переднюю камеру глаза. Основная часть цилиарного тела, за исключением отростков, образована ресничной, или цилиарной, мышцей. Она состоит из пучков гладких мышечных клеток, располагающихся в трех различных направлениях.

 

Улитка. (Внутреннее ухо)

Внутреннее ухо состоит из костного лабиринта и расположенного в нем перепончатого лабиринта. В перепончатом лабиринте находятся рецепторные клетки — волосковые сенсорные эпителиоциты органа слуха и равновесия. Они расположены в определенных участках: слуховые рецепторные клетки — в спиральном органе улитки, а рецепторные клетки органа равновесия — в эллиптическом и сферическом мешочках и ампулярных гребешках полукружных каналов.
1. Верхнемедиальная стенка- вестибулярная мембрана. Она представляет собой тонкофибриллярную соединительнотканную пластинку, покрытую однослойным плоским эпителием.
2. наружная стенка- сосудистая полоска (это многорядный эпителий, имеющий собственные кровеносные сосуды)
3. Нижняя стенка, основание треугольника - базиллярная мембрана (пластинка), состоит из отдельных натянутых струн (фибриллярные волокна). Длина струн увеличивается в направлении от основания улитки к верхушке. Струны ближе к основанию улитки (более короткие) резонируют на высокие частоты колебаний, струны ближе к верхушке улитки - на низкие частоты колебаний. Пространство костной улитки выше вестибулярной мембраны называется вестибулярной лестницей, ниже базиллярной мембраны - барабанной лестницей. Вестибулярная и барабанная лестница заполнены перилимфой и на верхушке костной улитки сообщаются между собой.

Спиральный орган или кортиев орган - рецепторная часть органа слуха, располагается на базиллярной мембране. Он состоит из чувствительных, поддерживающих клеток и покровной мембраны. 1. Сенсорные волосковые эпителиоциты - слегка вытянутые клетки с закругленным основанием, на апикальном конце имеют микроворсинки - стереоцилии. Сенсорные волосковые эпителиоциты делятся на внутренние грушевидные и наружные призматические. Наружные волосковые клетки образуют 3-5 рядов, а внутренние-1 ряд. М/у внутренними и наружными волосковыми клетками образуется Кортиев тоннель. Над микроворсинками волосковых сенсорных клеток нависает покровная (текториальная) мембрана.

2. ПОДДЕРЖИВАЮЩИЕ КЛЕТКИ (ОПОРНЫЕ КЛЕТКИ )- наружные клетки-столбы; внутренние клетки-столбы; наружные фаланогвые клетки; внутренние фаланговые клетки. Поддерживающие фаланговые эпителиоциты - располагаются на базиллярной мембране и являются опорой для волосковых сенсорных клеток, поддерживают их. В их цитоплазме обнаруживаются тонофибриллы.

3. ПОКРОВНАЯ МЕМБРАНА (ТЕКТОРИАЛЬНАЯ МЕМБРАНА) - студенистое образование, состоящее из коллагеновых волокон и аморфного вещества соединительной ткани, отходит от верхней части утолщения надкостницы спирального отростка, нависает над Кортиевым органом, в нее погружены верхушки стереоцилий волосковых клеток

 

 

Артериолы.

Артериолы- наиболее мелкие артерии мышечного типа которые, с одной стороны, связаны с артериями, а с другой – постепенно переходят в капиляры. В артериолах сохраняются 3 оболочки. Внутренняя оболочка состоит из эндотелиальных и единичных клеток подэдотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболочка образована 1-2 слоями гладких мышечных клеток, имеющих спиралевидное направление. В перекапилярных артериолах гладкие мышечные клетки располагаются поодиночке. Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная оболочка представлена адвентициальными клетками и единичными аргирофильными и колагеновыми волокнами.

Различают три разновидности венул: посткапиллярные, собирательные и мышечные. Венозные части капилляров собираются в посткапиллярные венулы. Ч/з стенку таких венул могут проходить плазма и форменные элементы крови. Эти венулы впадают в собирательные венулы. В их стенках появляются отдельные гладкомышечные клетки, часто не полностью окружающие просвет сосуда. Мышечные венулы, содержат 1–2 слоя гладкомышечных клеток в средней оболочке и выраженную наружную оболочку. Стенка гемокапилляров имеют наименьшую толщину и состоит из 3-х компонентов - эндотелиоциты, базальная мембрана, перициты в толще базальной мембраны. Различают следующие типы капилляров: 1. Гемокапилляры I типа (соматические) - капилляры с непрерывным эндотелием и непрерывной базальной мембраной. 2. Гемокапилляры II типа(фенестрированные)- базальная мембрана сплошная, в эндотелие имеются фенестры - истонченные участки в цитоплазме эндотелиоцитов. 3. Гемокапилляры III типа-(перфорированные) базальная мембрана не сплошная, местами отсутствует, а между эндотелиоцитами остаются щели

 

Тимус.

Вилочковая железа, или тимус-центральный орган лимфоцитопоэза и иммуногенеза. Из костномозговых предшественников Т-лимфоцитов в нем происходит их антиген независимая дифференцировка в Т-лимфоциты. Развитие. Тимус является эпителиальным органом, развивается из энтодермы.

Строение Снаружи вилочковая железа покрыта соединительнотканной капсулой. От нее внутрь органа отходят перегородки, разделяющие железу на дольки. В каждой дольке различают корковое и мозговое вещество. В основе органа лежит эпителиальная ткань, состоящая из отростчатых клеток - эпителиоретикулоцитов. Для всех эпителиоретикулоцитов характерно наличие десмосом, тонофиламентов и белков кератинов, продуктов главного комплекса гистосовместимости на своих мембранах.

Эпителиоретикулоциты в зависимости от локализации отличаются формой и размерами, тинкториальными признаками, плотностью гиалоплазмы, содержанием органелл и включений. Описаны секреторные клетки коры и мозгового вещества, несекреторные (или опорные) и клетки эпителиальных слоистых телец — телец Гассаля (гассалевы тельца).

Секреторные клетки вырабатывают регулирующие гормоноподобные факторы: тимозин, тимулин, тимопоэтины. Эти клетки содержат вакуоли или секреторные включения.

Эпителиальные клетки в субкапсулярной зоне и наружной коре имеют глубокие инвагинации, в которых расположены, как в колыбели, лимфоциты. Прослойки цитоплазмы этих эпителиоцитов — «кормилок» или «нянек» между лимфоцитами могут быть очень тонкими и протяженными. Обычно такие клетки содержат 10— 20 лимфоцитов и более.

Лимфоциты могут входить и выходить из инвагинаций и образовывать плотные контакты с этими клетками. Клетки-«няньки» способны продуцировать а-тимозин.

Кроме эпителиальных клеток, различают вспомогательные клетки. К ним относятся макрофаги и дендритные клетки. Они содержат продукты главного комплекса гистосовместимости, выделяют ростовые факторы (дендритные клетки), влияющие на дифференцировку Т-лимфоцитов.

Корковое вещество (cortex) — периферическая часть долек тимуса содержит Т-лимфоциты, которые густо заполняют просветы сетевидного эпителиального остова. В подкапсулярной зоне коркового вещества находятся крупные лимфоидные клетки — Т-лимфобласты, мигрировавшие сюда из красного костного мозга. Они под влиянием тимозина, выделяемого эпителиоретикулоцитами, пролиферируют.

Клетки коркового вещества определенным образом отграничены от крови гематотимусным барьером, предохраняющим дифференцирующиеся лимфоциты коркового вещества от избытка антигенов. В его состав входят эндотелиальные клетки гемокапилляров с базальной мембраной, перикапиллярное пространство с единичными лимфоцитами, макрофагами и межклеточным веществом, а также эпителиоретикулоциты с их базальной мембраной. Барьер обладает избирательной проницаемостью по отношению к антигену. Мозговое вещество (medulla) дольки тимуса на гистологических препаратах имеет более светлую окраску, так как по сравнению с корковым веществом содержит меньшее количество лимфоцитов. Лимфоциты этой зоны представляют собой рециркулирующий пул Т-лимфоцитов и могут поступать в кровь и выходить из кровотока через посткапиллярные венулы.

Количество митотически делящихся клеток в мозговом веществе примерно в 15 раз меньше, чем в корковом. Особенностью ультрамикроскопического строения отростчатых эпителиоретикулоцитов является наличие в цитоплазме гроздевидных вакуолей и внутриклеточных канальцев, поверхность которых образует микровыросты.

В средней части мозгового вещества расположены слоистые эпителиальные тельца (corpusculum thymicum) – тельца Гассаля. Они образованы концентрически наслоенными эпителиоретикулоцитами, цитоплазма которых содержит крупные вакуоли, гранулы кератина и пучки фибрилл.

 

 

18. Селезенка.

Селезенка (splen, lien) — периферический и самый крупный орган иммунной системы, располагающийся по ходу кровеносных сосудов. К функциям селезенки относятся:

· - участие в формировании гуморального и клеточного иммунитета, задержка антигенов, циркулирующих в крови;

· - элиминация из кровотока и, затем, разрушение старых и поврежденных эритроцитов и тромбоцитов, - «селезенка – кладбище эритроцитов»;

· - депонирование крови и накопление тромбоцитов (до 1/3 общего их числа в организме);

· - в эмбриональном периоде – кроветворная функция.

В селезенке происходят антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов и образование антител, а также выработка веществ, угнетающих эритропоэз в красном костном мозге.

Строение

Селезенка покрыта соединительнотканной капсулой и брюшиной (мезотелием). Капсула состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна. Между волокнами залегает небольшое количество гладких мышечных клеток.

Внутрь органа от капсулы отходят перекладины — трабекулы селезенки, которые в глубоких частях органа анастомозируют между собой. Капсула и трабекулы в селезенке человека занимают примерно 5—7 % от общего объема органа и составляют его опорно-сократительный аппарат. В трабекулах селезенки человека сравнительно немного гладких мышечных клеток. Эластические волокна в трабекулах более многочисленны, чем в капсуле.

Строма органа представлена ретикулярными клетками и ретикулярными волокнами, содержащими коллаген III и IV типов.

Паренхима (или пульпа) селезенки включает два отдела с разными функциями: белая пульпа (pulpa lienis alba) и красная пульпа (pulpa lienis rubra).

Строение селезенки и соотношение между белой и красной пульпой могут изменяться в зависимости от функционального состояния органа.

Белая пульпа селезенки

Белая пульпа селезенки представлена лимфоидной тканью, расположенной в адвентиции артерий в виде шаровидных скоплений, или узелков, и лимфатических периартериальных влагалищ. В целом они составляют примерно 1/5 органа.

Лимфатические узелки селезенки (фолликулы, или мальпигиевы тельца; lymphonoduli splenici) 0,3—0,5мм в диаметре представляют собой скопления Т- и В-лимфоцитов, плазмоцитов и макрофагов в петлях ретикулярной ткани (дендритных клеток), окруженные капсулой из уплощенных ретикулярных клеток. Через лимфатический узелок проходит, обычно эксцентрично, центральная артерия (a. centralis), от которой отходят радиально капилляры.

Лимфатические узелки селезенки (как и лимфоузлов) – являются B-зависимой зоной белой пульпы селезенки. В лимфатических узелках различают 4 нечетко разграниченные зоны: периартериальную, центр размножения, мантийную и краевую, или маргинальную, зону

Периартериальные лимфатические влагалища (ПАЛВ, vagina periarterialis lymphatica) представляют собою вытянутые по ходу пульпарной артерии скопления лимфоидной ткани. Периартериальные лимфатические влагалища являются Т-зависимой зоной селезенки.

Красная пульпа селезенки

Красная пульпа селезенки включает венозные синусы и пульпарные тяжи.

Пульпарные тяжи. Часть красной пульпы, расположенная между синусами, называется селезеночными, или пульпарными, тяжами (chordae splenicae) Бильрота. Это форменные элементы крови, макрофаги, плазматические клетки лежащие в петлях ретикулярной соединительной ткани. Здесь по аналогии с мозговыми тяжами лимфатических узлов заканчивают свою дифференцировку и секретируют антитела плазмоциты, предшественники которых перемещаются сюда из белой пульпы. В пульпарных тяжах встречаются скопления В- и Т-лимфоцитов, которые могут формировать новые узелки белой пульпы. В красной пульпе задерживаются моноциты, которые дифференцируются в макрофаги.

Селезенка считается «кладбищем эритроцитов» в связи с тем, что обладает способностью понижать осмотическую устойчивость старых или поврежденных эритроцитов. Такие эритроциты не способны выйти в венозные синусы и подвергаются разрушению и поглощаются макрофагами красной пульпы.

В селезенке депонируется кровь и скапливаются тромбоциты. Старые тромбоциты также подвергаются здесь разрушению.

Синусы красной пульпы, расположенные между селезеночными тяжами, представляют собой часть сложной сосудистой системы селезенки. Это широкие тонкостенные сосуды неправильной формы, выстланы эндотелиальными клетками необычной веретеновидной формы с узкими щелями между ними, через которые в просвет синусов из окружающих тяжей мигрируют форменные элементы. Базальная мембрана прерывиста, ее дополняют ретикулярные волокна и отростки ретикулярных клеток.

 

19. Особенности кровоснабжения селезенки.

Васкуляризация. В ворота селезенки входит селезеночная артерия, которая разветвляется на трабекулярные артерии. Наружная оболочка артерий рыхло соединена с тканью трабекул. Средняя оболочка четко заметна на любом срезе трабекулярной артерии благодаря мышечным пучкам, идущим в составе ее стенки по спирали. От трабекулярных артерий отходят пульпарные артерии. В наружной оболочке этих артерий много спирально расположенных эластических волокон, которые обеспечивают продольное растяжение и сокращение сосудов. Недалеко от трабекул в адвентиции пульпарных артерий появляются периартериальные лимфатические влагалища и лимфатические узелки. Артерия получает название центральной.

Центральная артерия, проходящая через узелок, отдает несколько гемокапилляров и, выйдя из узелка, разветвляется в виде кисточки на несколько кисточковых артериол (arteriolae penicillaris). Дистальный конец этой артериолы продолжается в эллипсоидную (гильзовую) артериолу (arteriolaelipsoideae), снабженную муфтой (или «гильзой») из ретикулярных клеток и волокон. Это своеобразный сфинктер на артериоле. У человека эти гильзы развиты очень слабо. В эндотелии гильзовых или эллипсоидных артериол обнаружены сократительные фила-менты. Далее следуют короткие гемокапилляры. Большая часть капилляров красной пульпы впадает в венозные синусы (это т.н. закрытое кровообращение), однако некоторые могут непосредственно открываться в ретикулярную ткань красной пульпы (это т.н. открытое кровообращение). Закрытое кровообращение — путь быстрой циркуляции и оксигенации тканей. Открытое кровообращение — более медленное, обеспечивающее контакт форменных элементов крови с макрофагами.

Синусы являются началом венозной системы селезенки. Их диаметр колеблется от 12 до 40 мкм в зависимости от кровенаполнения. При расширении совокупность всех синусов занимает большую часть селезенки. Эндотелиоциты синусов расположены на прерывистой базальной мембране. По поверхности стенки синусов в виде колец залегают ретикулярные волокна. Синусы не имеют перицитов. Во входе в синусы и в месте их перехода в вены имеются подобия мышечных сфинктеров. При открытых артериальных и венозных сфинктерах кровь свободно проходит по синусам в вены. Сокращение венозного сфинктера приводит к накоплению крови в синусе. Плазма крови проникает сквозь стенку синуса, что способствует концентрации в нем клеточных элементов. В случае закрытия венозного и артериального сфинктеров кровь депонируется в селезенке. При растяжении синусов между эндотелиальными клетками образуются щели, через которые кровь может проходить в ретикулярную строму. Расслабление артериального и венозного сфинктеров, а также сокращение гладких мышечных клеток капсулы и трабекул ведет к опорожнению синусов и выходу крови в венозное русло.

 

20. Строение лимфоузлов.

Лимфатические узлы (noduli limphatici) располагаются по ходу лимфатических сосудов, являются органами лимфоцитопоэза, иммунной защиты и депонирования протекающей лимфы. Имеют округлую или бобовидную форму. К выпуклой поверхности подходят приносящие лимфатические сосуды, в области ворот на вогнутой поверхности входят артерии и нервы, выходят выносящие лимфатические сосуды и вены.

Благодаря такому расположению узла по ходу лимфатических сосудов он является своеобразным фильтром для оттекающей от тканей жидкости (лимфы) на пути в кровяное русло. Протекая через лимфатические узлы, лимфа очищается от инородных частиц и антигенов на 95—99%, от избытка воды, белков, жиров, обогащается антителами и лимфоцитами.

Лимфатические узлы покрыты соединительнотканной капсулой, от которой вглубь органа отходят трабекулы. Строма узлов представлена ретикулярной соединительной тканью – сетью ретикулярных клеток, коллагеновых и ретикулярных волокон, а также макрофагами и антиген-представляющими клетками. Паренхима узлов представлена лимфоидными клетками.

Строение

Несмотря на многочисленность лимфатических узлов и вариации органного строения, они имеют общие принципы организации. Снаружи узел покрыт соединительнотканной капсулой, несколько утолщенной в области ворот. В капсуле много коллагеновых и мало эластических волокон. Кроме соединительнотканных элементов, в ней главным образом в области ворот располагаются отдельные пучки гладких мышечных клеток, особенно в узлах нижней половины туловища. Внутрь от капсулы через относительно правильные промежутки отходят тонкие соединительнотканные перегородки, или трабекулы, анастомозирующие между собой в глубоких частях узла. В совокупности они составляют примерно 1/4 площади среза органа.

Корковое вещество

Характерным структурным компонентом коркового вещества являются лимфатические узелки (noduli lymphatici). Они представляют собой округлые образования диаметром до 1 мм.

В ретикулярном остове узелков проходят толстые, извилистые ретикулярные волокна, в основном циркулярно направленные. В петлях ретикулярной ткани залегают лимфоциты, лимфобласты, макрофаги и другие клетки. В периферической части узелков находятся малые лимфоциты в виде короны.

Лимфатические узелки покрыты уплощенными ретикулярными клетками, лежащими на ретикулярных волокнах. Среди этих ретикулоэндотелиальных клеток много фиксированных макрофагов (т.н. «береговые макрофаги»). Центральная часть узелков обычно выглядит светлой вследствие того, что она состоит из более крупных клеток с большими светлыми ядрами: из лимфобластов, типичных макрофагов, «дендритных клеток», лимфоцитов. Лимфобласты обычно находятся в различных стадиях деления, вследствие чего эту часть узелка называют герминативным центром (centrum germinale), или центром размножения. При интоксикации организма, особенно микробного происхождения, в центральной части узелка могут появляться скопления фагоцитирующих клеток, что указывает на высокую реактивность описываемых структур. Поэтому данную часть узелка часто называют еще реактивным центром.

Паракортикальная зона

На границе между корковым и мозговым веществом располагается naракортикальная тимусзависимая зона (paracortex). Она содержит главным образом Т-лимфоциты. Микроокружением для лимфоцитов паракортикальной зоны является разновидность макрофагов, потерявших способность к фагоцитозу, — т.н. «интердигитирующие клетки», которые обладают многочисленными пальцевидными отростками, вдавливающимися из одной клетки в другую. Ядра интердигитирующих клеток неправильной формы, светлые, с краевым расположением хроматина. В слабобазофильной цитоплазме обнаруживаются везикулы, аппарат Гольджи, гладкая эндоплазматическая сеть. Фагосомы встречаются редко. Эти клетки вырабатывают гликопротеиды, которые играют роль гуморальных факторов лимфоцитогенеза. Гликопротеиды примембранных слоев способны сорбировать и сохранять антиген на цитоплазматических мембранах и индуцировать пролиферацию Т-лимфоцитов.

Мозговое вещество

От узелков и паракортикальной зоны внутрь узла, в его мозговое вещество, отходят мозговые тяжи (chordae medullaria), анастомозирующие между собой. В основе их лежит ретикулярная ткань, в петлях которой находятся В-лимфоциты, плазматические клетки и макрофаги. Здесь происходит созревание плазматических клеток. Большая часть иммуноглобулинов, образуемых здесь плазматическими клетками, относится к классу иммуноглобулинов G. Внутри мозговых тяжей проходят кровеносные сосуды и капилляры, содержащие поры в эндотелии. Снаружи тяжи, так же как и лимфатические узелки, покрыты эндотелиоподобными ретикулярными клетками, лежащими на пучках ретикулярных фибрилл и образующих стенку синусов.

Синусы. Пространства, ограниченные капсулой и трабекулами с одной стороны и узелками и мозговыми тяжами — с другой, называются синусами, являющимися как бы продолжением приносящих лимфатических сосудов. Различают подкапсульный, или краевой, синус (sinus subcapsularis), располагающийся между капсулой и узелками, вокругузелковые синусы (sinus corticalis perinodularis), проходящие между узелками и трабекулами, а также мозговые синусы (sinus medullaris), ограниченные трабекулами и мозговыми тяжами.

Наружные клетки подкапсулярного синуса, прилежащие к капсуле узла, расположены на базальной мембране. По строению и функции они близки к эндотелиальным клеткам, выстилающим приносящие лимфатические сосуды. Среди этих клеток встречаются фагоцитирующие макрофаги. Внутренние эндотелиоподобные ретикулярные клетки, покрывающие лимфатические узелки коркового вещества, не имеют базальной мембраны, а лежат на пластинке ретикулярных фибрилл. Между клетками обнаруживаются щели, через которые в просвет синуса проникают лимфоциты. Клетки, выстилающие все остальные синусы, имеют аналогичное строение.

По синусам коркового и мозгового вещества протекает лимфа. При этом она обогащается лимфоцитами, которые поступают в нее в большем или меньшем количестве из узелков, паракортикальной зоны и мозговых тяжей. Среди свободных клеточных элементов в синусах при различных состояниях организма можно обнаружить лимфоциты, плазмоциты, свободные макрофаги; встречаются единичные зернистые лейкоциты и эритроциты. Синусы выполняют роль защитных фильтров, в которых благодаря наличию фагоцитирующих клеток задерживается большая часть попадающих в лимфатические узлы антигенов.

 

Гипоталамус

Гипоталамус - высший нервный центр регуляции эндокринных функций. Этот участок промежуточного мозга является также центром симпатического и парасимпатического отделов вегетативной нервной системы. Он контролирует и интегрирует все висцеральные функции организма и объединяет эндокринные механизмы регуляции с нервными. Нервные клетки гипоталамуса, синтезирующие и выделяющие в кровь гормоны, называются нейросекреторными клетками. Эти клетки получают афферентные нервные импульсы из других частей нервной системы, а их аксоны оканчиваются на кровеносных сосудах, образуя аксо-вазальные синапсы, через которые и выделяются гормоны.

Для нейросекреторных клеток характерно наличие гранул нейросекрета, которые транспортируются по аксону. Местами нейросекрет накапливается в большом количестве, растягивая аксон. Самые крупные из таких участков хорошо видны при световой микроскопии и называются тельцами Херринга. В них сосредоточена большая часть нейросекрета, - лишь около 30% его находится в области терминалей.

В гипоталамусе условно выделяют передний, средний и задний отделы.

В переднем гипоталамусе располагаются парные супраоптические и паравентрикулярные ядра, образованные крупными холинергическими нейросекреторными клетками. В нейронах этих ядер продуцируются белковые нейрогормоны - вазопрессин, или антидиуретический гормон, и окситоцин. У человека выработка антидиуретического гормона совершается преимущественно в супраоптическом ядре, тогда как продукция окситоцина преобладает в паравентрикулярных ядрах.

Вазопрессин вызывает усиление тонуса гладкомышечных клеток артериол, приводящее к повышению артериального давление. Второе название вазопрессина -антидиуретический гормон (АДГ). Воздействуя на почки, он обеспечивает обратное всасывание жидкости, отфильтрованной в первичную мочу из крови.

Окситоцин вызывает сокращения мышечной оболочки матки во время родов, а также сокращение миоэпителиальных клеток молочной железы.

В среднем гипоталамусе располагаются нейросекреторные ядра, содержащие мелкие адренергические нейроны, которые вырабатывают аденогипофизотропные нейрогормоны - либерины и статины. С помощью этих олигопептидных гормонов гипоталамус контролирует гормонообразовательную деятельность аденогипофиза. Либерины стимулируют выделение и продукцию гормонов передней и средней долей гипофиза. Статины угнетают функции аденогипофиза.

Нейросекреторная деятельность гипоталамуса испытывает влияние высших отделов головного мозга, особенно лимбической системы, миндалевидных ядер, гиппокампа и эпифиза. На нейросекреторные функции гипоталамуса сильно влияют также некоторые гормоны, особенно эндорфины и энкефалины.

 

 

Гипофиз

Гипофиз - нижний придаток головного мозга, - также является центральным органом эндокринной системы. Он регулирует активность ряда желез внутренней секреции и служит местом выделения гипоталамических гормонов (вазопрессина и окситоцина).

Гипофиз состоит из двух частей, различных по происхождению, строению и функции: аденогипофиза и нейрогипофиза.

В аденогипофизе различают переднюю долю, промежуточную долю и туберальную часть. Аденогипофиз развивается из гипофизарного кармана выстилки верхней части ротовой полости. Гормонопродуцирующие клетки аденогипофиза являются эпителиальными и имеют эктодермальное происхождение (из эпителия ротовой бухты).

В нейрогипофизе различают заднюю долю, стебель и воронку. Нейрогипофиз образуется как выпячивание промежуточного мозга, т.е. имеет нейроэктодермальное происхождение.

Гипофиз покрыт капсулой из плотной волокнистой ткани. Его строма представлена очень тонкими прослойками соединительной ткани, связанными с сетью ретикулярных волокон, которая в аденогипофизе окружает тяжи эпителиальных клеток и мелкие сосуды.

Передняя доля гипофиза образована разветвленными эпителиальными тяжами - трабекулами, формирующими сравнительно густую сеть. Промежутки между трабекулами заполнены рыхлой волокнистой соединительной тканью и синусоидными капиллярами, оплетающими трабекулы.

Эндокриноциты, располагающиеся по периферии трабекул, содержат в своей цитоплазме секреторные гранулы, которые интенсивно воспринимают красители. Это хромофильные эндокриноциты. Другие клетки, занимающие середину трабекулы, имеют нечеткие границы, и их цитоплазма окрашивается слабо, - это хромофобные эндокриноциты.

Хромофильные эндокриноциты подразделяются на ацидофильные и базофильные соответственно окрашиванию их секреторных гранул.

Ацидофильные эндокриноциты представлены двумя типами клеток.

Первый тип ацидофильных клеток - соматотропы - вырабатывают соматотропный гормон (СТГ), или гормон роста; действие этого гормона опосредовано особыми белками - соматомединами.

Второй тип ацидофильных клеток - лактотропы - вырабатывают лактотропный гормон (ЛТГ), или пролактин, который стимулирует развитие молочных желез и лактацию.

Базофильные клетки аденогипофиза представлены треми типами клеток (гонадотропами, тиротропами и кортикотропами).

Первый тип базофильных клеток - гонадотропы - вырабатывают два гонадотропных гормона - фолликулостимулирующий и лютеинизирующий:

· фолликулостимулирующий гормон (ФСГ) стимулирует рост фолликулов яичника и сперматогенез;

· лютеинизирующий гормон (ЛГ) способствует секреции женских и мужских половых гормонов и формирование желтого тела.

Второй тип базофильных клеток - тиротропы - вырабатывают тиреотропный гормон (ТТГ), стимулирующий активность щитовидной железы.

Третий тип базофильных клеток - кортикотропы - вырабатывают адренокортикотропный гормон (АКТГ), который стимулирует активность коры надпочечников.

Большинство клеток аденогипофиза - хромофобные. В отличие от описанных хромофильных клеток, хромофобные слабо воспринимает красители и не содержат отчетливых секреторных гранул.

Хромофобные клетки разнородны, к ним относятся:

· хромофильные клетки - после выведения гранул се



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 652; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.37.5 (0.012 с.)