![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ннтерференционные приборы и их применение.Содержание книги
Поиск на нашем сайте
Интерференция применяется в сверхточных претензионных измерениях. Используются приборы – интерферометры, в их основе лежит явление интерференции. 2-ая область – контроль за чистотой обработки поверхности высокого класса точности. 3) для определения коэффициента линейности расширения твердого тела – делатометр. 4) просветление оптики.
Принцип Гюйгенса-Френеля. Качественно явление дифракции света объясняется на основе принципа Гюйгенса: каждая точка пространства до которой дошло световое возбуждение становится источником вторичных волн, распространяющихся в данной среде с характерной для нее фазовой скоростью v. Геометрическоее место точек, до которого доходит световое возбуждение за один и тот же промежуоток времени носит название фронта волны или волновой поверхности. Огибающая вторичных волн – есть положение волнового фронта в последующий момент времени. Пусть расространяется волна и ее волновой фронт в некоторый момент времени есть поверхность Ф. Такое распространение показывает, что волновой фронт загибается на концах, также как и лучи (нормаль к волновой поверхности). Количественный расчет дифракционного явления был предпринят: Френелем, который исходил из ряда положений, принимающихся без доказательства и составляющих принцип Гюйгенса-Френеля. Эти положения сводятся к следующему: 1) следуя Гюйгенсу Френель предложил заменить реально действующий источник излучения эквивалентной ему совокупностью вторичных (виртуальных) источников и испускаемых ими торичных волн. 1) В качестве вторичного источника выступают бесконечно малые участки поверхности S замкнутой вокруг So. Выбор поверхности S произволен, но чаще всего поверхность S совпадает с нулевой поверхностью. 2) согласно Френелю все вториные источники когерентны между собой и испускают когерентные волны, в любой точке вне S, волны, идущие от So представляют собой интерференцию вторичных волн. Для поверхности S совпадающей с волновым фронтом все вторичные испускаемые колебания в одной фазе. 3) для поверхности S, совпадающей с волновой поверхностью разные по площади вторичные источники испускают равное по мощности вторичное излучение. dS1=dS2=dSn; dP1=dP2=dPn (P-мощность). 4) Каждый вторичный источник, излучает направление нормали к волновой поверхности в данной точке. Интенсивность излучения (амплитуда) в точке p тем меньше, чем больше угол α
между внешней нормалью и радиус-вектором проведенным в точке наблюдения. Фаза результирующего колебания зависит тоже от r (в). 5) если чсть волновой поверхности перекрыто непразрачным экраном, то световое воздействие в точке наблюдателя осуществляется открытыми вторичными источниками. Для нахождения результирующего колебания в точке P, необходимо просуммировать вторичные источники по их амплитуде и фазам. Существует приближенный метод расчета интерференции вторичных волн – метод зон Френеля Метод зон Френеля. Френель предложил объединил симметричные точки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от точки наблюдений была бы равна l/2 и следовательно от краев 2-х соседних волн приход. в точку наблюдения в противофазе и при наложении др. на др. ослабевают. Обозначим ч/з A1 амплитуду колебаний в точке P даваемым всеми точками источниками находим внутри 1-й зоны Френеля. Ясно что A1 > A2 > A3… Результат амплитуды колебаний в т.P даваемое всеми зонами Френеля будет A = A1 - A2+A3 - A4…, A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда колебаний = половине амплитуды колебаний даваемой 1-й зоной Френеля.
Явление дифракции. Дифракция Френеля на круглом отверстии. Дифракцией света называется явление отклонения от прямолинейного распространения волн, огибание волнами препятствий и захождение волн в область геометрической тени. ДИФРАКЦИЯ ФРЕНЕЛЯ НА
а) CD – экран. Экран с круглым отверстием AB. Исследуем световое воздействие в точке р, лежащей на линии пересечения источника S с центром отр. Отверстие вырезает часть волновой поверхности. Разобьем открытую часть волновой поверхности на зоны Френеля. В зависимости от размеров отверстий на ней укладывается то или иное количество зон. Если отверстие пропускает 1, 3 или 5 зон, то световое воздействие в точке р больше, чем при полностью открытом волновом фронте. Максимум светового воздействия в точке р при k=1 (см последний рисунок в прошлом абзаце). Если отверстие открывает небольшое четное число зон Френеля (k=2,4,6), то световое воздействие всегда больше, чем при полностью открытом волновом фронте. Min воздействия отвечает отверстию в 2 зоны Френеля.
Исследуем световое воздействие в точке p. Экран перекрывает часть зон Френеля. Разобьем открытую часть световой поверхности на зоны Френеля. Согласно рассуждениям методом зон Френеля: A=(An+1)/2 + [(An+1)/2 – (An+2)/2 + (An+3)/2] + … + - Ak/2. n – число перекрытых зон Френеля. An+1 – амплитуда от 1-ой открытой зоны. A=(An+1)/2. Итак, если число зон, перекрытых экраном AB невелико, точка р останется освещенной, причем интенсивность освещенности не отличается практически от интенсивности освещенности, создаваемой полностью открытым световым фронтом. По мере увеличения размеров экрана АВ амплитуда от 1-ой открытой зоны будет убывать, однако точка р остается освещенной до тех пор, пока число перекрытых зон Френеля достаточно мало и лишь при условии, что экран перекрывает большее число зон Френеля, в точке р будет наблюдаться min, т.е. геометрическая тень от экрана АВ.
|
||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 155; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.97.14.85 (0.009 с.) |