Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Генеральная и выборочная совокупность. Способы отбора. Статическая функция распределения. Статические оценки параметров распределения.

Поиск

Определим основные понятия математической статистики.

Генеральная совокупность – все множество имеющихся объектов.

Выборка – набор объектов, случайно отобранных из генеральной совокупности.

Объем генеральной совокупности N и объем выборки n – число объектов в рассматривае-мой совокупности.

Виды выборки:

Повторная – каждый отобранный объект перед выбором следующего возвращается в генеральную совокупность;

Бесповторная – отобранный объект в генеральную совокупность не возвращается.

Замечание. Для того, чтобы по исследованию выборки можно было сделать выводы о поведе-нии интересующего нас признака генеральной совокупности, нужно, чтобы выборка правиль-но представляла пропорции генеральной совокупности, то есть была репрезентативной (представительной). Учитывая закон больших чисел, можно утверждать, что это условие выполняется, если каждый объект выбран случайно, причем для любого объекта вероятность попасть в выборку одинакова.

Первичная обработка результатов.

Пусть интересующая нас случайная величина Х принимает в выборке значение х 1 п 1 раз, х 2п 2 раз, …, хк – пк раз, причем где п – объем выборки. Тогда наблюдаемые значения случайной величины х 1, х 2,…, хк называют вариантами, а п 1, п 2,…, пкчастотами. Если разделить каждую частоту на объем выборки, то получим относительные частоты Последовательность вариант, записанных в порядке возрастания, называют вариационным рядом, а перечень вариант и соответствующих им частот или относительных частот – стати-стическим рядом:

xi x 1 x 2 xk
ni n 1 n 2 nk
wi w 1 w 2 wk

Если исследуется некоторый непрерывный признак, то вариационный ряд может состоять из очень большого количества чисел. В этом случае удобнее использовать группированную выборку. Для ее получения интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько равных частичных интервалов длиной h, а затем находят для каждого частичного интервала ni – сумму частот вариант, попавших в i -й интервал. Составленная по этим результатам таблица называется группированным статистическим рядом:

Номера интервалов     k
Границы интервалов (a, a + h) (a + h, a + 2 h) (b – h, b)
Сумма частот вариант, попав- ших в интервал   n 1   n 2   …   nk

Распределение функции.

Для наглядного представления о поведении исследуемой случайной величины в выборке можно строить различные графики. Один из них – полигон частот: ломаная, отрезки которой соединяют точки с координатами (x 1, n 1), (x 2, n 2),…, (xk, nk), где xi откладываются на оси абсцисс, а ni – на оси ординат. Если на оси ординат откладывать не абсолютные (ni), а относительные (wi) частоты, то получим полигон

рис.1

относительных частот (рис.1).

По аналогии с функцией распределения случайной величины можно задать некоторую функцию, относительную частоту события X < x.

Выборочной (эмпирической) функцией распределения называют функцию F* (x), определяющую для каждого значения х относительную частоту события X < x. Таким образом,

, (15.1)

где пх – число вариант, меньших х, п – объем выборки.

Замечание. В отличие от эмпирической функции распределения, найденной опытным путем, функцию распределения F (x) генеральной совокупности называют теоретической функцией распределения. F (x) определяет вероятность события X < x, а F* (x) – его относительную частоту. При достаточно больших п, как следует из теоремы Бернулли, F* (x) стремится по вероятности к F (x).

Из определения эмпирической функции распределения видно, что ее свойства совпадают со свойствами F (x), а именно:

1) 0 ≤ F* (x) ≤ 1.

2) F* (x) – неубывающая функция.

3) Если х 1 – наименьшая варианта, то F* (x) = 0 при хх 1; если хк – наибольшая варианта, то F* (x) = 1 при х > хк.

Для непрерывного признака графической иллюстрацией служит гистограмма, то есть ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высотами отрезки длиной ni /h (гистограмма частот) или wi /h (гистограмма относительных частот). В первом случае площадь гистограммы равна объему выборки, во втором – единице Рис.2.

 

24. Доверительный интервал для математического ожидания нормального распределения при известном и неизвестном распределении. Коэффициент Стьюдента.



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 216; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.82.22 (0.006 с.)