Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Закон больших чисел. Предельные теоремы. Неравенство Чебышева. Теоремы Чебышева. Теорема Бернулли.Содержание книги
Поиск на нашем сайте Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачи-вает случайный характер и становится закономерным (иначе говоря, случайные отклоне-ния от некоторого среднего поведения взаимно погашаются). В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному. Математическая формулировка этого утверждения дается в группе теорем, называемой законом больших чисел. Неравенство Чебышева. Неравенство Чебышева, используемое для доказательства дальнейших теорем, справед-ливо как для непрерывных, так и для дискретных случайных величин. Докажем его для дискретных случайных величин. Неравенство Чебышева. p( | X – M (X)| < ε) ≥ D (X) / ε². (13.1) Доказательство. Пусть Х задается рядом распределения
Так как события | X – M (X)| < ε и | X – M (X)| ≥ ε противоположны, то р (| X – M (X)| < ε) + + р (| X – M (X)| ≥ ε) = 1, следовательно, р (| X – M (X)| < ε) = 1 - р (| X – M (X)| ≥ ε). Найдем р (| X – M (X)| ≥ ε). D (X) = (x 1 – M (X))² p 1 + (x 2 – M (X))² p 2 + … + (xn – M (X))² pn. Исключим из этой суммы те слагаемые, для которых | X – M (X)| < ε. При этом сумма может только уменьшиться, так как все входящие в нее слагаемые неотрицательны. Для определенности будем считать, что отброшены первые k слагаемых. Тогда D (X) ≥ (xk+ 1 – M (X))² pk+ 1 + (xk+ 2 – M (X))² pk +2 + … + (xn – M (X))² pn ≥ ε² (pk+ 1 + pk+ 2 + … + pn). Отметим, что pk+ 1 + pk+ 2 + … + pn есть вероятность того, что | X – M (X)| ≥ ε, так как это сумма вероятностей всех возможных значений Х, для которых это неравенство справедливо. Следовательно, D (X) ≥ ε² р (| X – M (X)| ≥ ε), или р (| X – M (X)| ≥ ε) ≤ D (X) / ε². Тогда вероятность противоположного события p( | X – M (X)| < ε) ≥ D (X) / ε², что и требо-валось доказать. Теоремы Чебышева и Бернулли. теорема Чебышева. Если Х 1, Х 2,…, Хп – попарно независимые случайные величины, дисперсии которых равномерно ограничены (D (Xi) ≤ C), то для сколь угодно малого числа ε вероятность неравенства
будет сколь угодно близка к 1, если число случайных величин достаточно велико. Замечание. Иначе говоря, при выполнении этих условий Доказательство. Рассмотрим новую случайную величину
Следствие. Если Х 1, Х 2, …, Хп – попарно независимые случайные величины с равномерно ограничен-ными дисперсиями, имеющие одинаковое математическое ожидание, равное а, то для любого сколь угодно малого ε > 0 вероятность неравенства Вывод: среднее арифметическое достаточно большого числа случайных величин прини-мает значения, близкие к сумме их математических ожиданий, то есть утрачивает характер случайной величины. Например, если проводится серия измерений какой-либо физической величины, причем: а) результат каждого измерения не зависит от результатов остальных, то есть все результаты представляют собой попарно независимые случайные величины; б) измерения производятся без систематических ошибок (их математические ожидания равны между собой и равны истинному значению а измеряемой величины); в) обеспечена определенная точность измерений, следовательно, дисперсии рассматривае-мых случайных величин равномерно ограничены; то при достаточно большом числе измерений их среднее арифметическое окажется сколь угодно близким к истинному значению измеряемой величины. Теорема Бернулли. теорема Бернулл. Если в каждом из п независимых опытов вероятность р появления события А постоянна, то при достаточно большом числе испытаний вероят-ность того, что модуль отклонения относительной частоты появлений А в п опытах от р будет сколь угодно малым, как угодно близка к 1: Доказательство. Введем случайные величины Х 1, Х 2, …, Хп, где Xi – число появлений А в i -м опыте. При этом Xi могут принимать только два значения: 1(с вероятностью р) и 0 (с вероятностью q = 1 – p). Кроме того, рассматриваемые случайные величины попарно независимы и их дисперсии равномерно ограничены (так как D (Xi) = pq, p + q = 1, откуда pq ≤ ¼). Следовательно, к ним можно применить теорему Чебышева при Mi = p:
Но
что и требовалось доказать. Замечание. Из теоремы Бернулли не следует, что Системы случайных величин. Закон распределения вероятностей дискретной двумерной случайной величины. Функции распределения двумерной случайной величины и ее свойства. Двумерная плотность вероятности и ее свойства. Закон распределения дискретной двумерной случайной величины (Х, Y)имеет вид таблицы с двойным входом, задающей перечень возможных значений каждой компоненты и вероятности p (xi, yj), с которыми величина принимает значение (xi, yj):
При этом сумма вероятностей, стоящих во всех клетках таблицы, равна 1. Зная закон распределения двумерной случайной величины, можно найти законы распреде-ления ее составляющих. Действительно, событие Х = х 1 представляется собой сумму несовместных событий (X = x 1, Y = y 1), (X = x 1, Y = y 2),…, (X = x 1, Y = ym), поэтому р (Х = х 1) = p (x 1, y 1) + p (x 1, y 2) +…+ p (x 1, ym) (в правой части находится сумма вероятностей, стоящих в столбце, соответствующем Х = х 1). Так же можно найти вероятности остальных возможных значений Х. Для определения вероятностей возможных значений Y нужно сложить вероятности, стоящие в строке таблицы, соответствующей Y = yj. Функцией распределения F (x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y: F (х, у) = p (X < x, Y < y). (8.1)
1)f (x, y) ≥ 0 (см. предыдущее замечание: вероятность попадания точки в прямоуголь-ник неотрицательна, площадь этого прямоугольника положительна, следовательно, предел их отношения неотрицателен). 2)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Последнее изменение этой страницы: 2016-08-12; просмотров: 417; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.169 (0.008 с.) |