Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие и виды средних величин, их прикладное значениеСодержание книги
Поиск на нашем сайте
Следующие обобщающие показатели после абсолютных и относительных данных – это средние величины и связанные с ними показатели вариации. Они имеют исключительное значение в экономическом анализе и играют важную роль в юридической статистике. Только с помощью средних можно охарактеризовать совокупности по количественному варьирующему признаку, по которому можно их сравнивать. Предположим, нам необходимо сопоставить судебную практику назначения уголовных наказаний в двух районах, схожих по уровню и структуре преступности. Эту задачу нельзя решить на основе сравнения мер наказаний, назначенным конкретным осужденным, хотя какие-то суждения и можно высказать, если за одинаковые по квалификации деяния были назначены существенно различающиеся меры наказания. Нельзя этого сделать и на основе сопоставления большого количества данных о назначенных наказаниях. Но если мы сложим все сроки наказания (варианты, обозначив их символами дср х2, х3 и т. д.) и разделим на общее число осужденных (п), то по полученным средним данным можно сказать, какая практика назначения наказания в том и другом суде и сравнить ее на основе средних показателей. При обобщении наказаний, не связанных с лишением свободы, могут быть применены порядок, используемый при их сложении (ст. 71 УК РФ), и другие правила о которых говорилось при анализе индекса судимости. В этом случае меры наказания, назначенные в том или ином суде, получают обобщенную характеристику в средних величинах, которые являются результатом абстрагирования от имеющихся индивидуальных различий, но с сохранением их основных свойств, в которых индивидуальные отклонения взаимопо-гашаются. Таким образом, с помощью средних величин можно сравнивать интересующие нас совокупности юридически значимых явлений по тем или иным количественным признакам и делать из этих сравнений необходимые выводы не только о сроках наказания, но о возрасте правонарушителей (осужденных, заключенных), сроках расследования и рассмотрения уголовных и гражданских дел, о цене исков и т. д. Средняя величина в статистике представляет собой обобщенную характеристику совокупности однородных явлений по какому-либо одному количественно варьирующему признаку. Она всегда обобщает количественную вариацию признака, к примеру, возраст правонарушителей от 14 до 60 лет, меры наказания от 1 месяца до 20 лет. Этот признак, хотя и в разной степени, но присущ всем единицам совокупности. Каждый правонарушитель имеет тот или иной возраст, а также каждый осужденный получил ту или иную меру наказания, измеряемого непосредственно в годах (баллах). Поэтому за всякой средней скрывается ряд распределения единиц совокупности по изучаемому признаку, т. е. вариационный ряд. Средняя величина – это обобщающий показатель, который представляет собой типичную характеристику качественно однородных массовых процессов и явлений по какому-либо одному количественно-варьирующему признаку. Правовая статистика использует средние величины для характеристики: средних сроков рассмотрения УД, среднее число краж в месяц, средний размер ущерба, средний возраст осужденных лиц, средняя нагрузка судей и др. Виды средних – это структурные средние и степенные средние Первые это – мода и медиана. Вторые – средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратичная. Вопрос 18. Степенные средние: средняя арифметическая, средняя гармоническая, средняя геометрическая. Степенные средние могут быть простыми и взвешенными. Простая средняя величина рассчитывается при наличии двух и более несгруппированных статистических величин, расположенных в произвольном порядке по следующей общей формуле: Общая формула простой степенной средней величины Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы: Общая формула взвешенной степенной средней величины где X – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят следующие виды степенных средних величин: при m = -1 средняя гармоническая; при m = 0 средняя геометрическая; при m = 1 средняя арифметическая. Средняя арифметическая. Средняя арифметическая - это самая часто используемая средняя величина, которая получается, если подставить в общую формулу m=1. Средняя арифметическая простая имеет следующий вид: где X - значения величин, для которых необходимо рассчитать среднее значение; N - общее количество значений X (число единиц в изучаемой совокупности). Средняя арифметическая взвешенная имеет следующий вид: где f - количество величин с одинаковым значением X (частота). Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X отсутствует нижняя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X. Средняя гармоническая. Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной: Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой:
Средняя геометрическая. Средняя геометрическая применяется при определении средних относительных изменений. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X.
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 380; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.107.147 (0.009 с.) |