Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Функционирование ЭВМ с канальной организацией

Поиск

 

В основе этого типа организации ЭВМ лежит множественность каналов связи между устройствами и функциональная специализация узлов. Упрощенная схема организации ЭВМ с каналами приведена на рис. 5.4.

 

 

Рис. 5.4. Упрощенная схема ЭВМ с канальной организацией: ЦП – центральный процессор; ВУ – внешние устройства.

 

Сравним схему ЭВМ с каналами и описанную выше схему ЭВМ с шинной организацией.

Все фон-неймановские ЭВМ очень похожи друг на друга и алгоритм функционирования центрального процессора по сути ничем не отличается от описанного выше.

Помимо уже знакомого набора устройств (центральный процессор, память, устройства ввода-вывода) в состав ЭВМ с канальной организацией входят устройства, называемые каналами. Канал — это специализированный процессор, осуществляющий всю работу по управлению контроллерами внешних устройств и обмену данными между основной памятью и внешними устройствами. Устройства группируются по характерной скорости и подключаются к соответствующим каналам. «Быстрые» устройства (например, накопители на магнитных дисках) подсоединяются к селекторным каналам. Такое устройство получает селекторный канал в монопольное использование на все время выполнения операции обмена данными. «Медленные» устройства подключаются к мультиплексным каналам. Мультиплексный канал разделяется (мультиплексируется) между несколькими устройствам, при этом возможен одновременный обмен данными с несколькими устройствами. Доступ к оперативной памяти может получить и центральный процессор, и один из каналов. Для управления очередностью доступа имеется контроллер оперативной памяти. Он определяет приоритетную дисциплину доступа при одновременном обращении нескольких устройств к памяти. Наименьший приоритет имеет центральный процессор. Среди каналов больший приоритет имеют медленные каналы. Таким образом, приоритет обратно пропорционален частоте обращения устройств к памяти.

За счет существенного усложнения организации ЭВМ упрощается архитектура ввода-вывода. Связь между отдельными узлами осуществляется по схеме, напоминающей треугольник. Операции обмена данными становятся более простыми. Канал, по сути, представляет собой специализированный «интеллектуальный» контроллер прямого доступа к памяти. Для ускорения обмена данными реализованы несколько трактов обмена данными (процессор — основная память и каналы — основная память). О своем состоянии канал может информировать процессор с помощью прерываний. Все контроллеры внешних устройств подключаются к «своим» каналам с помощью стандартного интерфейса. Свобода подключения внешних устройств сохраняется благодаря стандартному протоколу интерфейса, при этом появляется возможность группировать устройства по характеристикам.

Результатом введения каналов (специализированных процессоров ввода-вывода) является большая стандартизация и упрощение процессов обмена. С другой стороны, вводятся некоторые ограничения. Например, сохраняется только одна схема, напоминающая схему прямого доступа, с обменом информации между процессором и каналом по прерываниям.

Канал, являясь хотя и специализированным, но все-таки процессором, выполняет свою канальную программу. Она состоит из канальных команд и хранится в оперативной памяти. Длина канальной программы произвольна, последняя команда канальной программы содержит признак конца. Подготовку канальной программы и загрузку ее в оперативную память осуществляет операционная система.

Отметим некоторые особенности канальных машин. Несколько подряд идущих канальных команд могут образовывать цепочку данных. В этом случае имеется одна команда обмена, например чтения физической записи из нескольких адресов оперативной памяти со счетчиков. Одна физическая запись распределяется в несколько адресов оперативной памяти.

В ЭВМ с канальной организацией процессор практически полностью освобождается от рутинной работы по организации ввода-вывода. Управление контроллерами внешних устройств и обмен данными берет на себя канал. Наличие нескольких трактов передачи данных снимает трудности, связанные с блокировкой единственного тракта передачи данных (системной шины), что повышает скорость обмена. Все это дает возможность производить обмен данными с внешними устройствами параллельно с основной вычислительной работой центрального процессора. В результате общая производительность системы существенно возрастает. Удорожание схемы окупается.

Одной из первых машин с каналами была ЭВМ второго поколения IBM-704. Ярким примером ЭВМ с каналами являются машины семейства IBM-360/370. Появление этих ЭВМ произвело переворот в вычислительной технике, и на долгие годы они стали образцом подражания у создателей ЭВМ. Хотя в настоящее время эти машины ушли в прошлое, они оставили богатое наследие в виде интересных архитектурных решений, программных и алгоритмических разработок. В настоящее время схемы со специализированными процессорами ввода-вывода часто встречаются в ЭВМ различных типов. Несомненно, идея схемы с каналами не умерла, и к ней еще неоднократно будут возвращаться.

 

Информационная модель ЭВМ

 

Обработка чисел, символьной информации, логическая обработка, обработка сигналов — это все частные случаи общего понятия под названием «обработка информации». Для ЭВМ характерен признак: информация представляется с помощью двоичных целых чисел. Существует три этапа обработки информации:

· хранение двоичной информации;

· передача от одного хранилища к другому;

· преобразование.

ЭВМ можно представить как совокупность узлов, соединенных каналом связи. Узлы соединяют в себе функции хранения и преобразования. По каналам связи передается информация от узла к узлу. Мы будем говорить о потоках информации в каналах связи (рис. 5.5). Некоторые узлы могут иметь специальную функцию ввода информации в систему и вывода из нее.

 

Рис. 5.5 Информационная модель ЭВМ: У — узлы

 

Показанная на рис. 5.5 модель не имеет ограничений на связи между отдельными узлами. Реализовать такую систему весьма сложно. Реально существующие системы имеют ряд ограничений на связи и четкое функциональное назначение отдельных узлов. Функции отдельного узла могут зависеть от его состояния. Состояние узла описывается значениями его внутренних полей (регистров) и может определяться процессом его функционирования или задаваться извне. Состояние узла будем называть его режимом. Физически режим может определяться значением регистра узла. Тогда установить режим узла означает присвоить регистру определенное значение.

По каналам связи узлы могут обмениваться либо значащей информацией (сообщениями), либо управляющей. Под сообщениями будем понимать последовательности двоичных цифр, сохраняемые или обрабатываемые узлом. Управляющая информация определяет режимы узлов и каналов связи.

Информационная модель позволяет определить основные характеристики ЭВМ:

1. Узлы хранения имеют:

· вместимость — максимальную, среднюю или минимальную;

· скорость выборки;

· разрядность выборки.

2. Преобразующие узлы имеют скорость преобразования.

3. Каналы определяются:

· скоростью передачи информации (пропускная способность);

· разрядностью передачи.

 

 

Рис. 5.6. Различные схемы организации ЭВМ:

ЭВМ с шинной организацией (а); канальная ЭВМ (б); ЭВМ с перекрестной коммутацией (в); конвейерная ЭВМ (г); КМ — коммутирующая матрица; КВВ — канал ввода-вывода

 

Из множества возможных соединений отбираются несколько типовых схем, обеспечивающих простоту, возможность реконфигурации (расширения), надежность, стандартизацию и т.д. Можно отметить следующие схемы (рис. 5.6):

· с шинной организацией;

· специализированные процессоры (каналы);

· схемы с коммутацией;

· архитектуры с распределенными функциями (распределенный интеллект);

· с конвейерной организацией.

Рассмотрим некоторые частные модели ЭВМ, имеющие широкое распространение или представляющие теоретический интерес.

Шинная организация. В этой схеме все устройства симметрично подсоединяются к одному каналу, называемому общей шиной. Симметрия подключения гарантирует свободное подключение новых устройств, т.е. система имеет теоретически неограниченное развитие. Некоторые узлы могут иметь специфические свойства, например процессор, оперативная память, внешние накопители данных. Между ними организуется обмен информации. Так как потоки информации ограничены возможностями одного канала, эта схема имеет принципиальные ограничения скорости работ.

Канальная организация. В этой схеме операции обмена данными с внешними устройствами организуются через специализированный узел — канал ввода-вывода. Благодаря этому можно организовывать обработку информации параллельно с вводом-выводом.

Организация с перекрестной коммутацией. Идея структурной организации таких ЭВМ заключается в том, что все связи между узлами осуществляются с помощью специального устройства — коммутирующей матрицы. Коммутирующая матрица может связывать между собой любую пару узлов, причем таких пар может быть сколько угодно – связи не зависят друг от друга. В такой схеме нет конфликтов из-за связей, есть конфликты только из-за ресурсов. Возможность одновременной связи нескольких пар устройств позволяет достичь очень высокой производительности комплекса.

Архитектура с распределенными функциями. Это являлось основной идеей японского проекта ЭВМ пятого поколения. В настоящее время эта идея осталась не реализованной. Суть идеи заключается в том, что обработка информации распределяется по «интеллектуальным» периферийным устройствам. Переход от ЭВМ четвертого поколения к ЭВМ пятого поколения намечалось осуществить не за счет существенного изменения элементной базы (как было ранее), а за счет резкого качественного изменения сложности и интеллектуальности различных компонент ЭВМ.

Конвейерная организация. Здесь обрабатывающее устройство разделяется на последовательно включенные операционные блоки, каждый из которых специализирован на выполнение строго определенной части операции. При этом работа осуществляется следующим образом: когда i -й операционный блок выполняет i -ую часть j -й операции, (i -1)-й операционный блок выполняет (i -1)-ую часть (j +1)-й операции, а (i +1)-й операционный блок выполняет (i +1)-ую часть (j -1)-й операции. В результате образуется своего рода конвейер обработки и за счет этого повышается производительность системы.

 

 

Основные команды ЭВМ

 

Большое изумление у человека, не знакомого с вычислительной техникой, вызывает тот факт, что все разнообразие решаемых на ЭВМ задач реализуется с помощью небольшого набора очень простых команд. Система команд у типичной ЭВМ включает в себя всего 60 — 150 базовых команд. Все команды в основном служат для выполнения очень простых действий, таких, как прочитать, запомнить, сложить, сдвинуть, сравнить и т.д. Интеллектуальность ЭВМ достигается за счет того, что она способна выполнять программы, состоящие из большого числа таких простых действий с огромной, не достижимой для человека скоростью. В данном разделе кратко рассмотрим набор команд, используемых в типичных ЭВМ, и действия, реализуемые этими командами.

При описании системы команд ЭВМ обычно принято классифицировать команды по функциональному назначению, длине, способу адресации и другим признакам. Классификации команд по различным признакам показаны на рис. 5.7. Рассмотрим основные группы команд, придерживаясь классификации команд на группы по функциональному назначению.

 

 

Рис. 5.7. Классификация команд ЭВМ

 

Команды передачи данных. Данная группа команд включает в себя подгруппы команд передачи кодов между регистрами внутри процессора, из регистров процессора в память, из памяти в регистры процессора, из одних ячеек памяти в другие и передачи данных между процессором и портами внешних устройств. Отдельную подгруппу составляют команды работы со стеком. Они позволяют включать данные в стек для временного хранения и извлекать данные из стека при необходимости их использования. Подробное назначение и принципы использования стеков в ЭВМ рассмотрим ниже при обсуждении работы с подпрограммами и прерываниями.

Команды обработки данных. Данную группу команд с точки зрения выполняемых над данными операций можно подразделить на арифметические (сложить, вычесть, умножить и т.д.), логические (операции И, ИЛИ, НЕ и т.д.) и команды сдвига. Команды этого типа могут иметь один или два операнда. Операнды могут храниться в регистрах центрального процессора, в памяти или в самой команде. Результат операции формируется в регистре-приемнике или в специализированном регистре-аккумуляторе. Команды данной группы формируют признаки результатов, устанавливаемые в регистре флагов процессора, перенос из старшего разряда, переполнение, нулевой результат и др. К арифметическим командам относят также и команды сравнения. Обычно для сравнения двух чисел процессор выполняет операцию вычитания. По результату вычитания устанавливаются флаги во флаговом регистре процессора. Очевидно, что если сравниваемые величины равны, результат вычитания будет нулевым, и во флаговом регистре установится флаг нулевого результата. Если первая из сравниваемых величин больше — результат вычитания будет отрицательным и установится флаг отрицательного результата и т.д. Результат вычитания не сохраняется в памяти, по состоянию флагового регистра можно судить о результатах сравнения двух величин. Многие процессоры имеют команды сравнения операнда с нулем. В некоторых процессорах имеются команды проверки или установки состояния отдельных битов в операнде.

Команды передачи управления. Они имеют важное значение, так как используются для изменения естественного порядка следования команд и организации циклических участков в программах.

Простейшей командой передачи управления является команда безусловного перехода JMP <адрес>, которая загружает адрес перехода, указанный в команде, в программный счетчик. Команды условного перехода проверяют указанное в команде условие и модифицируют программный счетчик, если условие истинно. Обычно команды условного перехода используются после команд, изменяющих состояние флагового регистра (например, команд сравнения). При проверке условия производится сравнение состояния одного или нескольких флагов из флагового регистра с комбинацией, указанной в коде команды условного перехода. Модификация программного счетчика может производиться либо загрузкой в него нового значения, либо сложением его со смещением, указанным в команде.

Команды для работы с подпрограммами. Стеки. В практике программирования широко используется такой прием, как организация подпрограмм. Подпрограмма описывается один раз, а использоваться (вызываться) может из различных мест программы. При этом, после того как подпрограмма закончила свою работу, управление должно быть передано туда, откуда подпрограмма была вызвана на команду, следующую в памяти сразу за командой обращения к подпрограмме. Адрес команды, на которую управление передается после окончания работы подпрограмм, называется адресом возврата. Очевидно, для того, чтобы начать выполнять подпрограмму, в программный счетчик необходимо загрузить адрес первой команды подпрограммы. Для осуществления возврата из подпрограммы необходимо запомнить в каком-то месте адрес возврата. Можно, например, сохранить адрес возврата в одном из регистров процессора. Такой способ сохранения адреса возврата очень прост и легко реализуется. Однако он обладает одним существенным недостатком. Достаточно часто встречаются подпрограммы, которые вызывают другие подпрограммы. Пусть основная программа вызвала подпрограмму А. Она в свою очередь обратилась к подпрограмме В. Если адрес возврата для подпрограммы А хранится в регистре процессора, то куда девать адрес возврата при вызове подпрограммы В?

Для организации подпрограмм большинство ЭВМ используют аппаратно поддерживаемую структуру данных, называемую стеком. Стек – это структура данных, организованная по принципу: последним вошел — первым вышел, т.е. последние записанные в стек данные извлекаются из него первыми. В переводе с англ., stack — стопка. Аналогом стека может служить стопка тарелок. Положить тарелку в стопку можно только сверху, извлечь опять-таки только верхнюю тарелку. В ЭВМ для организации стека выделяется область оперативной памяти, а для ее адресации и доступа к стеку используется упоминавшийся выше регистр — указатель стека. Указатель стека хранит адрес ячейки памяти, содержащей последнее помещенное в стек значение.

Для возврата из подпрограммы в основную программу служат команды возврата RETURN. Команды возврата из подпрограммы извлекают из стека верхний элемент и помещают его в программный счетчик. Если имели место несколько вложенных вызовов подпрограмм, то возврат произойдет по адресу возврата, сохраненному после последнего вызова, так как для хранения адресов возврата используется стек, и последний сохраненный адрес возврата будет использован первым.

Прочие команды. В ЭВМ могут быть дополнительные (специальные) команды. К их числу можно отнести команды остановки центрального процессора, сброса внешних устройств, установки или сброса отдельных признаков и т.д.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 260; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.110.171 (0.007 с.)