Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Диастола желудочков (0,60 сек).Содержание книги
Поиск на нашем сайте
Состоит из фазы изометрического наполнения и периода изгнания. Фаза изометрического расслабления - 0,10 сек. Длится до того момента, когда давление в полостях желудочков упадет ниже давления крови в предсердиях. Период наполнения - 0,5 сек. Состоит из фазы быстрого наполнения, фазы медленного наполнения и фазы дополнительного наполнения. 1. Фаза быстрого наполнения - 0,2 сек. Вследствие того, что во время систолы желудочков в предсердиях давление крови последовательно возрастало вследствие постоянного венозного притока, сразу после открытия атриовентрикулярных клапанов кровь под давлением устремляется в желудочки. 2. Фаза медленного наполнения - 0,2 сек. Из-за постепенного выравнивания давления процесс пассивного наполнения замедляется. 3. Фаза дополнительного наполнения желудочков – О, 1 сек. Обеспечивается систолой предсердий. При этом активно нагнетается последняя порция крови (5-10 % от УО), формируется конечнодиастоличе-ский объем (КДО)- объем желудочка в конце диастолы отражает наполнение сердца кровью. ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №28 Потенциал действия: его компоненты, их характеристика и механизм возникновения. Если на клетку нанести раздражение достаточной силы, клетка придет в новое, активное состояние. При нанесении раздражения увеличивается проницаемость мембраны для натрия. Это происходит за счет энергии раздражителя и связано с активацией небольшого числа натриевых каналов. Возникает небольшое усиление входящего натриевого тока, интенсивность входящего натриевого тока пропорционально силе раздражителя. За счет этого процесса происходит уменьшение полярности мембраны по сравнению с исходным (с 70 мВ до 40-50 мВ). Эти изменения называются - пассивная деполяризация или частичная деполяризация, выраженность и скорость этого процесса зависит от силы раздражителя. Если силы раздражителя недостаточно, чтобы сместить ПМ до некого критического уровня, то происходит возращение ПМ к исходному уровню, т.е. к уровню ПП. Возникшие изменения ПМ называются - локальный ответ. Если силы раздражителя достаточно, чтобы сместить ПМ до критического уровня деполяризации, то произойдет формирования потенциала действия (ПД), что свидетельствует о возбуждении клетки переходе ее в деятельное состояние.
Критический уровень деполяризации/КУД/- это такая величина разности потенциалов (40-50 мВ), при которой активируется большое количество потенциалзависимых быстрых натриевых каналов, проницаемость мембраны для натрия становится максимальной и перестает быть зависимой от силы раздражителя. Возникает лавинообразный входящий натриевый ток, который быстро (доли мс) смещает потенциал мембраны до 0 (активная деполяризация - потеря полярности), а затем его силы хватает чтобы изменить знак мембраны на противоположный - плюс 10-20 мВ. (Смена знака потенциала мембраны называется овершут или реверсия потенциала). Входящий натриевый ток формирует восходящую часть пика (спайка) потенциала действия, наличие которого указывает на сформировавшееся возбуждение клетки. Амплитуда пика не зависит от силы раздражителя - закон «все или ничего», будем рассматривать в следующей лекции. Наличие восходящей части пика ПД свидетельствует, что клетка перешла в новое функциональное состояние – состояние возбуждения, т.е. в деятельное состояние. Вторая половина ПД (нисходящая) состоит из трех частей: 1. Нисходящая часть пика ПД (от острия пика до КУД), формируется быстро (за доли мс), 2. Положительный следовой потенциал (от КУД до ПП) формируется медленнее (несколько мс), 3. Отрицательный следовой потенциал(несколько мс). 1 и 2 части обеспечиваются процессом реполяризации, 3 часть - процессом гиперполяризации. Процесс реполяризации - возвращение, восстановление полярности мембраны клеток, которое для них характерно в покое. Процесс реполяризации обусловлен: 1. активацией потенциалзависимых быстрых калиевых каналов, которая(активация) возникает при ПМ 0- плюс 5 мВ), что приводит к возникновению значительного по объему выходящего калиевого тока. 2. быстрой инактивацией потенциалзависимых натриевых каналов, которая возникает сразу после достижения высшего значения ПД (+10,+20мв). Это блокирует входящий натриевый ток. 3. значительной активацией калий-натриевого насоса (увеличение скорости оборота), которая обеспечивает удаление избытка натрия в клетке, возникшего в фазу деполяризации. Эти три процесса обеспечивают возвращение ПМ до уровня ПП.
Следует заметить, что эти три процесса ионного транспорта инертны и не инактивируются мгновенно при достижении ПМ уровня ПП, что приводит к избыточному перемещению ионов и, как следствие, к избыточной поляризации мембраны (гиперполяризации), за счет которой (гиперполяризации) и формируется отрицательный следовой потенциал. Затем ПМ мембраны клетка приходит в исходное состояние. Следует иметь ввиду, что при формировании ПД выходящий калиевый ток, осуществляемый через неуправляемые медленные калиевые каналы по объему ничтожно мал по сравнению с объемом перемещения натрия и калия через быстрые потенциалзависимые каналы, так как процесс формирования ПД происходит за мс. Артериальный пульс: определение, происхождение. Скорость распространения пульсовой волны и линейная скорость кровотока, их взаимоотношение с эластичностью артериальной стенки. Методы изучения пульса. Сфигмограмма и ее характеристика. Показатели артериального пульса у лиц пожилого и старческого возраста. Артериальным пульсом называются ритмические колебания артериальных стенок, обусловленные прохождением пульсовой волны. Пульсовая волна это распространяющееся колебание стенки артерий в результате систолического повышения артериального давления. Пульсовая волна возникает в аорте во время систолы, когда в нее выбрасывается систолический порция крови и ее стенка растягивается. Так как пульсовая волна движется по стенке артерий, скорость ее распространения не зависит от линейной скорости кровотока, а определяется морфофункциональным состоянием сосуда. Чем больше жесткость стенки, тем больше скорость распространения пульсовой волны и наоборот. Поэтому у молодых людей она составляет 7-10 м/сек, а у старых, из-за атеросклеротических изменений сосудов, возрастает. Самым простым методом исследования артериального пульса является пальпаторный. Обычно пульс прощупывается на лучевой артерии путем прижатия ее к подлежащей лучевой кости. Так как характер пульса в основном зависит от деятельности сердца и тонуса артерий, по пульсу можно судить об их состоянии. Обычно определяют его следующие параметры: 1. Частота пульса. В норме 60-80 уд/мин. 2. Ритмичность. Если интервалы между пульсовыми волнами одинаковы пульс ритмичный. 3. Скорость пульса. Это быстрота пульсового повышения и понижения давления. При патологии может наблюдаться быстрый или медленный пульс. 4. Напряжение пульса. Определяется силой, которую необходимо приложить для того, чтобы пульс прекратился. Например при артериальной гипертензии наблюдается напряженный пульс. 5. Наполнение. Складывается из высоты пульсовой волны и частично напряжения пульса. Зависит от величины систолического объема крови. Если сила сокращений левого желудочка падает, пульс становится слабым. Объективное исследование пульсовой волны осуществляют с помощью сфигмографии. Это метод графической регистрации пульса. Сфигмография позволяет рассчитать такие физиологические показатели, как скорость распространения пульсовой волны, упругость и эластическое сопротивление артериального русла, а также диагностировать некоторые заболевания сердца и сосудов. В клинике используют объемную и чаще прямую сфигмографию. Прямая заключается в непосредственной регистрации колебаний стенки артерии. Для этого на артерию накладывают датчик, преобразующий ее механические колебания в электрический сигнал, который подается на электрокардиограф. Если производится сфигмография сонных или подключичных артерий, получают центральные сфигмограммы, а если бедренной, лучевой, локтевой - периферические. Периферическая сфигмограмма является периодической кривой на которой выделяют следующие элементы:
1. Восходящая часть (cd), называется анакротой. Она отражает рост артериального давления в период систолы. 2. Снижение пульсовой волны (df) - катакрота. Свидетельствует о диастолическом понижении давления. 3. Инцизура (f). 4. Дикротический подъем (h). Обусловлен вторичным повышением артериального давления, в результате удара возвращающегося к сердцу потока крови о закрывшийся аортальный клапан Печень как полифункциональный орган. Участие печени в обмене и депонировании веществ, метаболизме и синтезе физиологически активных веществ. Барьерная функция печени. Печень как депо крови. Кроветворная функция печени у плода и детей. Из всех органов печень играет ведущую роль в обмене белков, жиров, углеводов, витаминов, гормонов и других веществ. Ее основные функции: 1. Антитоксическая. В ней обезвреживаются токсические продукты, образующиеся в толстом кишечнике в результате бактериального гниения белков - индол, скатол и фенол. Они, а также экзогенные токсические вещества (алкоголь), подвергаются биотрансформации. (Экк-Павловское соустье). 2. Печень участвует в углеводном обмене. В ней синтезируется и накапливается гликоген, а также активно протекают процессы гликогенолиза и неоглюкогенеза. Часть глюкозы используется для образования жирных кислот и гликопротеинов. 3. В печени происходит дезаминирование аминокислот, нуклеотидов и других азотсодержащих соединений. Образующийся при этом аммиак нейтрализуется путем синтеза мочевины. 4. Печень участвует в жировом обмене. Она преобразует короткоцепочечные жирные кислоты в высшие. Образующийся в ней холестерин используется для синтеза ряда гормонов. 5. Она синтезирует ежесуточно около 15 г альбуминов, 1 и 2-глобулины, 2-глобулины плазмы. 6. Печень обеспечивает нормальное свертывание крови, аз-глобулинами являются протормбин. Ас-глобулин, конвертин, антитромбины. Кроме того, ею синтезируется фибриноген и гепарин. 7. В ней инактивируются такие гормоны, как адреналин, норадреналин, серотонин, андрогены и эстрогены. 8. Она является депо витаминов А, В, D, Е, К. 9. В ней депонируется кровь, а также происходит разрушение эритроцитов с образованием из гемоглобина билирубина. 10. Экскреторная. Ею выделяются в желудочно-кишечный тракт холестерин, билирубин, мочевина, соединения тяжелых металлов. 11. В печени образуется важнейший пищеварительный сок - желчь. Желчь вырабатывается гепатоцитами путем активного и пассивного транспорта в них воды, холестерина, билирубина, катионов. В гепатоцитах из холестерина образуются первичные желчные кислоты - холевая и дезоксихолевая. Из билирубина и глюкуроновой кислоты синтезируется водорастворимый комплекс. Они поступают в желчные капилляры и протоки, где желчные кислоты соединяются с глицином и таурином. В результате образуются гликохолевая и таурохолевая кислоты. Гидрокарбонат натрия образуется с помощью тех же механизмов, что и в поджелудочной железе. Желчь вырабатывается печенью постоянно. В сутки ее образуется около 1 литра. Гепатоцитами выделяется первичная или печеночная желчь. Это жидкость золотисто-желтого цвета щелочной реакции. Ее рН=7,4-8,6. Она состоит из 97,5% воды и 2,5% сухого остатка. В сухом остатке содержатся: 1. минеральные вещества: катионы натрия, калия и кальция, гидрокарбонат, фосфат анионы, анионы хлора; 2. желчные кислоты - таурохолевая и гликохолевая; 3. желчные пигменты - билирубин и его окисленная форма биливердин. Билирубин придает желчи цвет; 4. холестерин и жирные кислоты; 5. мочевина, мочевая кислота, креатинин; 6. муцин. Поскольку вне пищеварения сфинктер Одди, расположенный в устье общего желчного протока, закрыт, выделяющаяся желчь накапливается в желчном пузыре. Здесь из нее реабсорбируется вода, а содержание основных органических компонентов и муцина возрастает в 5-10 раз. Поэтому пузырная желчь содержит 92% воды и 8% сухого остатка. Она более темная, густая и вязкая, чем печеночная. Благодаря этой концентрации пузырь может накапливать желчь в течение 12 часов. Во время пищеварения открывается сфинктер Одди и сфинктер Люткенса в шейке пузыря. Желчь выходит в двенадцатиперстную кишку. Значение желчи: 1. Желчные кислоты эмульгируют часть жиров, превращая крупные жировые частицы в мелкодисперсные капли. 2. Она активирует ферменты кишечного и поджелудочного сока, особенно липазы. 3. В комплексе с желчными кислотами происходит всасывание длинноцепочечных жирных кислот и жирорастворимых витаминов через мембрану энтероцитов. 4. Желчь способствует ресинтезу триглицеридов в энтероцитах. 5. Инактивирует пепсины, а также нейтрализует кислый химус, поступающий из желудка. Этим обеспечивается переход от желудочного к кишечному пищеварению. 6. Стимулирует секрецию поджелудочного и кишечного соков, а также пролиферацию и слущивание энтероцитов. 7. Усиливает моторику кишечника. 8. Оказывает бактериостатическое действие на микроорганизмы кишечника и таким образом препятствует развитию гнилостных процессов в нем. Регуляция желчеобразования и желчевыделения в основном осуществляется гуморальными механизмами, хотя некоторую роль играют и нервные. Самым мощным стимулятором желчеобразования в печени являются желчные кислоты, всасывающиеся в кровь из кишечника. Его также усиливает секретин, который способствует увеличению содержания в желчи гидрокарбоната натрия. Блуждающий нерв стимулирует выработку желчи, симпатические тормозят. При поступлении химуса в двенадцатиперстную кишку начинается выделение I-клетками ее слизистой холецистокинина-панкреозимина. Особенно этот процесс стимулируют жиры, яичный желток и сульфат магния. ХЦК-ПЗ усиливает сокращения гладких мышц пузыря, желчных протоков, но расслабляет сфинктеры Люткенса и Одди. Желчь выбрасывается в кишку. Рефлекторные механизмы играют небольшую роль. Химус раздражает хеморецепторы тонкого кишечника. Импульсы от них поступают в пищеварительный центр продолговатого мозга. От него они по вагусу к желчевыводящим путям. Сфинктеры расслабляются, а гладкие мышцы пузыря сокращается. Это способствует желчевыведению.
В эксперименте желчеобразование и желчевыведение исследуются в хронических опытах путем наложения фистулы общего желчного протока или пузыря. В клинике для исследования желчевыделения используют дуоденальное зондирование, рентгенографию с введением в кровь рентгеноконтрастного вещества билитраста, ультразвуковые методы. Белковообразовательную функцию печени, ее вклад в жировой, углеводный, пигментный обмены изучают путем исследования различных показателей крови. Например определяют содержание общего белка, протромбина, антитромбина, билирубина, ферментов. Наиболее тяжелыми заболеваниями являются гепатиты и цирроз печени. Чаще всего гепатиты являются следствием инфекции (инфекционные гепатиты А, В, С) и воздействия токсических продуктов (алкоголь). При гепатитах поражаются гепатоциты и нарушаются все функции печени. Цирроз это исход гепатитов. Самым частым нарушением желчевыделения является желчно-каменная болезнь. Основная масса желчных камней образована холестерином, так как желчь таких больных перенасыщена им. ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №29 Определение физиологии и ее задачи. Методы физиологического исследования функций организма. Основы павловского метода изучения функций организма в условиях хронического эксперимента. Понятие о функциональных системах организма (П.К. Анохин), их значение. Свойства функциональных систем. 1. Определение физиологии Физиология изучает функции живого организма, его физиологических систем, органов и клеток, а также регуляцию функций организма и его взаимоотношения с окружающей средой. Регуляция функций осуществляется нервной системой (нервная регуляция) и био- логически активными веществами, находящимися в жидкостях организма (гуморальная регуляция). 2. Основные этапы развития физиологии В развитии физиологии различают 2 этапа: а) допавловский, б) павловский. Допав- ловский период характеризуется аналитическим подходом к изучению функций организ- ма, павловский – синтетическим подходом. В современный период большое внимание уделяется системному направлению в физиологии (П.К. Анохин). 3. Основные принципы павловской физиологии. Принципы нервизма И.П. Павлов выделил 3 основные принципа физиологии: 1) организм – это единое целое. Он обладает способностью к саморегуляции функ- ций; 2) организм и внешняя среда – это единое целое. Организм должен быть уравно- вешенным с условиями внешней среды. 3) принцип нервизма. Нервизм – это направление в физиологии и медицине, кото- рое стремиться распространить влияние нервной системы на возможно большее количе- ство деятельностей организма. Различают 4 этапа в развитии нервизма в физиологии. Направление нервизма в фи- зиологии продолжает развиваться и в настоящее время. Этому во многом способствуют успехи электрофизиологии. 4. Методы физиологического исследования Физиология располагает двумя методами: 1) наблюдение; 2) эксперимент (опыт). Эксперимент может быть острым и хроническим. 5. Понятие о функциональных системах организма (П.К. Анохин) Функциональная система – это совокупность различных органов и тканей, принад- лежащих к различным анатомо-физиологическим образованиям, но обеспечивающих оп- ределенную форму приспособительной деятельности организма. Итогом деятельности функциональной системы является полезный для организма приспособительный результат. Функциональная система состоит из следующих компонентов: 1) рецепторы; 2) нервные и гуморальный пути; 3) центральное звено (комплекс управляющих нервных центров); 4) исполнительное (эффекторное) звено; 5) обратная связь (афферентация); 6) полезный приспособительный результат. Свойства функциональной системы: 1) динамичность; 2) саморегуляция. При достижении полезного приспособительного результата данная функциональ- ная система распадается и может быть сформирована новая в зависимости от условий, в которых находится организм. При этом одни и те же органы могут входить в состав раз- личных функциональных систем. Отклонение какой-либо функции, ее показателя от исходного уровня является сти- мулом (причиной) формирования функциональной системы. Функциональная система работает по принципу опережения, ее деятельность по- зволяет организму заранее подготовиться к изменениям внешней или внутренней среды организма.
|
|||||||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 309; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.148.57 (0.014 с.) |