Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биоэлектрические явления в сердце. Электрокардиография. Отведения ЭКГ. Происхождение зубцов, интервалов, сегментов.

Поиск

Электрокардиография – это регистрация электрической активности мышцы сердца, возникающей в результате ее возбуждения. Впервые запись электрокардиограммы произвел в 1903 г. с помощью струнного гальванометра голландский физиолог Эйнтховен. Он же первым в 1906 г. использовал этот метод для диагностики. Электрокардиограф состоит из усилителя биопотенциалов и регистрирующего устройства. При электрокардиографии регистрируется разность потенциалов, возникающая между различными точками тела в результате возбуждения сердца. Регистрация ЭКГ осуществляется с помощью биполярных и униполярных отведений. При биполярных оба электрода являются активными, т.е. регистрируется разность потенциалов между ними. При униполярных отведениях регистрируется разность потенциалов между активным электродом и индифферентным, имеющим нулевой потенциал. Его образуют другие электроды, соединенные вместе. Биполярными являются стандартные отведения, предложенные Эйнтховеном, а униполярными усиленные отведения от конечностей. Стандартных отведений три: I отведение: правая и левая рука, II: правая рука и левая нога, III: левая рука и левая нога. При усиленных отведениях регистрируется разность потенциалов между активным электродом на одной из конечности и индифферентным, образованным электродами на двух других конечностях. При отведении aVR активный электрод находится на правой руке, aVL – на левой, a aVF – левой ноге. Усиленные отведения служат для получения большей амплитуды элементов электрокардиограммы. Отведения от конечностей дают фронтальную проекцию распространения возбуждения. Его горизонтальную проекцию отражают грудные униполярные отведения по Вильсону. Таких отведений шесть: V1 – четвертое межреберье у правого края грудины, V2 – четвертое межреберье у левого края грудины, V3 – точка между V2 и V4; V4 – в пятом межреберье по среднеключичной линии, V5 – на передней подмышечной линии, V6 – средней подмышечной линии. Электрокардиограммой называется периодическая кривая, отражающая распространение возбуждения по миокарду. При стандартных отведениях она имеет следующий вид [рис. кривой ЭКГ]. На ЭКГ выделяют положительные и отрицательные зубцы Р, Q, R, S, Т, а также сегменты и интервалы. Направление зубцов определяют относительно изоэлектрической линии, при этом положительные направлены вверх. Сегментами называются расстояния между двумя зубцами. Например сегмент PQ – это промежуток между концом зубца Р и началом зубца Q. Интервалы включают один зубец и следующий за ним сегмент. Поэтому интервал PQ – это расстояние от начала зубца Р до начала зубца Q. Зубец Р называется предсердным. Он отражает распространение возбуждения по обоим предсердиям. Его длительность 0,05-0,1 сек., а амплитуда до – 0,25 мВ. Сегмент PQ свидетельствует о полном охвате обоих предсердий возбуждением, а также его распространении на атриовентрикулярный узел и пучок Гиса. Общая длительность интервала PQ 0,12-0,18 сек. Комплекс QRST называют желудочковым. Зубец Q отражает возбуждение сосочковых мышц. R – распространение возбуждения по желудочкам, а S – полный охват возбуждением обоих желудочков. Поэтому комплекс зубцов QRS называется электрической систолой желудочков. Его продолжительность 0,06-0,09 сек., а амплитуда зубца R 1-1,5 мВ. Амплитуда зубца Q не должна превышать 1/4 R, а его длительность должна быть не более 0,03 сек. Величина и продолжительность зубца S не измеряются. Сегмент ST указывает на полный охват возбуждением миокарда желудочков. Зубец Т соответствует фазе реполяризации желудочков. Его амплитуда 0,05–0,25 мВ, а длительность 0,16-0,24 сек. Теоретической основой электрокардиографии является дипольная теория. Согласно ей, каждое волокно миокарда является переменным электрическим диполем, т.е. его возбужденный конец заряжен отрицательно, а невозбужденный положительно. Параметры этого диполя характеризуются направлением и величиной. Они изображаются стрелкой – вектором. Вектор направлен от минуса к плюсу, а его длина отражает величину разности потенциалов в диполе. Между возбужденным и невозбужденным участками диполя возникает градиент напряжения величиной 120 мВ. Он соответствует амплитуде потенциала действия. Так как миокард является функциональным синцитием, в каждый момент возбуждения сердца отдельные векторы суммируются и образуют интегральный вектор. Причем 90% векторов взаимно нейтрализуются. Исходя из этого, в основе регистрации ЭКГ лежат следующие принципы: 1. общее электрическое поле сердца возникает в результате сложения полей всех мышечных волокон; 2. каждое возбужденное волокно является диполем, параметры которого, т.е. направление и величину, можно отразить вектором;

3. в каждый момент времени векторы суммируются и формируется интегральный вектор. За счет него возникает разность потенциалов между различными точками тела. Направление и величина интегрального вектора определяются моментом возбуждения сердца. Когда начинается возбуждение миокарда предсердий, вектор направлен сверху вниз к верхушке сердца (от "–" к "+"). Формируется зубец Р. В момент возбуждения всей мускулатуры предсердий разность потенциалов в них исчезает. Формируется сегмент PQ. В начале возбуждения миокарда межжелудочковой перегородки вновь возникает интегральный вектор, но уже направленный вверх, к основанию сердца. На ЭКГ появляется отрицательный зубец Q. При возбуждении большей части миокарда желудочков, вектор вновь меняет свое направление к верхушке сердца. Возникает зубец R. Последним возбуждается участок миокарда в области основания левого желудочка. Вектор будет направлен вверх, вправо и назад. Формируется отрицательный зубец S. Когда возбуждение полностью охватывает миокард обоих желудочков, разность потенциалов в них и вектор временно исчезают. На ЭКГ появляется сегмент ST. После этого начинается реполяризация миокарда желудочков. Поэтому вектор принимает положение вниз и влево. Формируется зубец Т. Электрокардиография имеет исключительное значение для клинической кардиологии. Ритмичность сердечных сокращений определяют по интервалам R-R. Если расстояние между всеми зубцами R одинаково, то ритм правильный. Частота сердечных сокращений по ЭКГ определяется по формуле: ЧСС=60/R-R, где R-R – длительность интервала в сек. Положение электрической оси сердца (ЭОС), определяют графически или визуально. Электрическая ось сердца совпадает с осью того отведения, при котором сумма зубцов комплекса QRS, имеющих положительный и отрицательный знак максимальна. Если ось отведения перпендикулярна электрической оси сердца, сумма положительного зубца R и отрицательного S равна нулю. Источник возбуждения в сердце определяется по последовательности зубцов Р и комплексов QRS. В норме в I и II стандартном отведениях положительны и зубец Р, предшествующий комплексу QRS. Если возникает патологический источник возбуждения в нижних отделах предсердий, то возбуждение распространяется в обратном направлении снизу вверх. На ЭКГ во II и III стандартных отведениях появляются отрицательные зубцы Р, предшествующие QRS. Функцию проводимости оценивают по длительности зубца Р, интервала PQ и общей продолжительности комплекса QRS. Увеличение длительности этих зубцов и интервалов свидетельствует о замедлении проведения в соответствующих отделах сердца. Дипольная теория послужила основой создания метода векторкардиографии. Если принять за основу предположение, что интегральный вектор во время одиночного цикла возбуждения исходит из одной точки, то конец этого вектора будет двигаться в пространстве, описывая векторную петлю. Эта векторная петля образуется на экране специального осциллоскопа кривую, состоящую из 3-х петель. Петля Р отражает распространение возбуждения по предсердиям, петля QRS по желудочкам, а петля Т – восстановление желудочков. Анализ векторкардиограммы производят путем определения длины, ширины петель или их площади.

2. Современные представления о механизме действия гормонов. Типы гормональной рецепции. Понятие о джи-белке. Роль вторичных посредников (мессенджеров).

Гормоны взаимодействуют со специальными структурами клетки – циторецепто-

рами. Различают два пути действия гормонов: 1) мембранный тип; внутриклеточный тип.

Особенности мембранного типа действия гормонов:

1) рецепторы гормонов расположены на наружной поверхности мембраны клетки-

мишени;

2) гормоны не проницаемы для клеточной мембраны;

3) для осуществления эффекта гормона требуются вторичные посредники –

цАМФ, цГМФ, инозитолтрифосфат, диацилглицерол, простагландины, ионы кальция и

другие;

4) у гормонов быстрый эффект действия, так как происходит активация уже синте-

зированных ферментов в клетке. К этой группе гормонов относятся все белковые пеп-

тидные гормоны и адреналин.

Особенности внутриклеточного типа действия гормонов:

1) гормоны легко проникают внутрь клетки;

2) их рецепторы расположены в ядре, митохондриях, рибосомах, цитозоле;

3) для осуществления их эффекта действия не требуются вторичные посредники;

4) для их действия характерна глубокая и длительная перестройка клеточного ме-

таболизма, связанное с влиянием на биосинтетические процессы. Поэтому эффект дейст-

вия этих гормонов относятся стероидные и йодированные гормоны (щитовидной желе-

зы).

6. Физиологическая роль гормонов в организме:

А) обеспечение физического, полового и умственного развития;

Б) адаптация организма (приспособление к изменениям внешней и внутренней

среды);

В) поддержание гомеостаза (постоянства состава и свойств внутренней среды ор-

ганизма);

Г) интеграция функций отдельных органов и систем.

7. Типы воздействия гормонов на организм

Гормоны оказывают четыре типа воздействия:

А) метаболическое – влияет на различные виды обмена веществ;

Б) морфогенетическое действие – влияют на рост, развитие и дифференцировку

тканей и органов, созревание организма;

В) пусковое действие – активируют работу того или иного органа;

Г) корригирующие действие – изменяют функции органов в соответствии с по-

требностями организма.

8. Регуляция образования гормонов

Различают: 1) внутриклеточный механизм регуляции образования и секреции

гормонов, осуществляется за счет ферментов; 2) системный механизм.

К системным механизмам относятся:

1) нервно-проводниковый;

2) нервно-эндокринный;

3) эндокринный;

4) неэндокринный гуморальный.

 

Виды кишечного пищеварения. Полостное и пристеночное пищеварение в тонком кишечнике. Всасывательная функция тонкого кишечника. Механизмы всасывания. Регуляция всасывания. Всасывательная активность желудочно-кишечного тракта у лиц пожилого возраста. Развитие механизмов регуляции пищеварения у детей.

МЕТОДИЧКА ОБМЕН ВЕЩЕСТВ, 52-55с

 

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №41



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 400; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.129.141 (0.009 с.)