Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Квант. Энергия кванта. Скорость света при переходе из одной среды в другую.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Квант (сколько) — неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения. Свет состоит из отдельных квантов, образующих свет одной частоты, что кванты тождественны между собой и каждый квант одним и тем же количеством энергии, кванты с одной и той же частотой имеют одну энергию. Закончена эта теория в 1923 году, де Брой. Именно ему удалось сосчитать массу кванта. Длина волны пропорциональна длине кванта. 3.7. Спектр. Условия образования спектров излучения. Характер распределения энергии в спектре. Непрерывные, линейчатые и полосатые спектры. Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа. Непрерывные спектры. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представ.тены волны всех длин волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу (см. рис. V, 1 на цветной вклейке). Распределение энергии по частотам, т. е. спектральная плотность интенсивности излучения, для разных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определенной частоте Vmax (рис. 10.3). Энергия излучения, приходящаяся на очень малые (V -> 0) и очень большие (v -> v ) частоты, ничтожно мала. При повышении температуры тела максимум спектральной плотности излучения смещается в сторону коротких волн. Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть те.ло до высокой температуры. Характер непрерывного спектра и сам факт его существования не только определяются свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновениях электронов с ионами. Линейчатые спектры. Внесем в бледное пламя газовой горелки кусочек асбеста, смоченный раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп увидим, как на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия (см.рис. V, 2 на цветной вклейке). Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На цветной вклейке приведены также спектры водорода и гелия. Каждый из спектров — это частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). На рисунке 10.4 показано примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре. Каждая линия имеет конечную ширину. Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров. Изолированные атомы излучают свет строго определенных длин волн. Обычно для наблюдения линeйчaтыx спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом. При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когдаa взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр. Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляетет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спеутров полосатые спектры образуются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, используют свечение паров вещества в пламени или свечение газового разряда. Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны. Энергия этих волн определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету ( 8 • 10-5 см), и поглощает все остальные. Если пропускать белый свет сквозь холодный, не излучающий газ, то на фоне непрерывного спектра источника появляются темные линии (см. рис. V, 5—8 на цветной вклейке). Газ поглощает наиболее интенсивно свет именно тех длин волн, которые он сам испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения. Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения Спектры, спектральный анализ.
Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне. ^ Тепловое излучение. Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет. Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет. Электролюминесценция. Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция. Катодолюминесценция. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминисенцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров. Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемиолюминесценкией. Фотолюминесценция. Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения. Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Если направить на сосуд с флюоресцеитом (органический краситель) световой пучок, пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено - желтым светом, т. е. светом большей длины волны, чем у фиолетового света. Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания. Перечислены основные виды излучений и источники, их создающие. Самые распространенные источники излучения - тепловые. ^ Распределение энергии в спектре. Ни один из источников не дает монохроматического света, т. е. света строго определенной длины волны. В этом нас убеждают опыты по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции. Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка. Можно также сказать, что энергия распределена по частотам, так как между длиной волны и частотой существует простая связь: �v = c.
Непрерывный (сплошной) спектр дают тела, находящиеся в твердом состоянии, а также сильно сжатые газы, нагретые до высокой температуры. Характер спектра объясняется сильным взаимодействием отдельных атомов и молекул. Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии (свечение паров вещества в пламени или свечение газового разряда). В этом случае атомы практически не взаимодействуют друг с другом, а изолированные атомы излучают строго определенные длины волн, характерные для каждого химического элемента. При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и при сильном сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя сплошной спектр. Полосатые спектры дают газы, молекулы которых слабо связаны друг с другом. При этом спектр состоит из отдельных полос, разделенных темными промежутками. Каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий, обусловленных взаимодействием атомов в молекуле. Спектр — (призрак) зависимость интенсивности излучения от его частоты или его длины волны. Спектры излучения образуется при испускании возбужденными системами. Если система в состоянии спокойствия, спектра нет. Это и есть спектр. По характеру распределения энергии различают групповые, индивидуальные и смешанные приводы. Выбор источника определяется еще и характером распределения энергии по его спектру испускания. Так, например, тепловые источники света, в которых используется излучение раскаленных твердых тел (нитей, штифтов, поверхностей, трубок), применяются главным образом в видимой и инфракрасной областях спектра. Электрические дуги и искры применяются в видимой и ультрафио летовой областях спектра в зависимости от состава электродов. Газосветные источники применяются в ближней инфракрасной, видимой и ультрафиолетовой областях в зависимости от состава газов, наполняющих лампы. 1. Непрерывный спектр- (сплошной) излучает нагретые твердые тела, высокотемпературные плазма и сильносжатые газы. Источники света: солнце, лампа накаливания, ксеноновые лампы высокого давления (вспышки) (6-7 тыс кельвинов). 2. Линейчатый спектр- состоит из узких пиков которые называются линиями. Его излучают разряженные атомарные газы и пары, вещества в атомарном состоянии. -энергосберегающие лампы -ртуть -лазеры -газоразрядные трубки -светодиод 3. Полосатый спектр излучают молекулы. Люминофор –вещество сложное, органическое, которое имеет полосатый спектр. (Псевдонепрерывный!) Фотометрия.
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 527; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.157.231 (0.011 с.) |