Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Технические средства объединения сетейСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Классификация технических средств объединения сетей, представленная на рис.4.1, включает в себя: · пассивные технические средства, используемые для объединения отдельных сегментов и расширения ЛВС, к которым относятся: - повторители (repeater); - концентраторы (hub); · активные технические средства, используемые для построения территориально-распределённых и глобальных сетей путём объединения как ЛВС, так и сетей других не ЛВС-технологий: - мосты (bridg); - маршрутизаторы (router); - коммутаторы (switch); - шлюзы (gateway).
Активные технические средства, в отличие от пассивных, основной функцией которых является усиление передаваемого сигнала, управляют трафиком на основе адресов назначения передаваемых данных, то есть работают на 2-м и более высоких уровнях OSI-модели. Пассивные технические средства работают, в основном, на 1-м физическом уровне. Мост – простейшее сетевое устройство, объединяющее локальные или удаленные сегменты и регулирующее прохождение кадров между ними. Подсоединенные к мосту сегменты образуют логически единуюсеть, в которой любая станция может использовать сетевые ресурсы, как своего сегмента, так и всех доступных через мост сегментов.
Мост работает на подуровне МАС второго канального уровня и прозрачен для протоколов более высоких уровней, то есть принимает решение о передаче кадра из одного сегмента в другой на основании физического адреса (МАС-адреса) станции назначения. Для этого мост формирует таблицу адресов (ТА), которая содержит: · список МАС-адресов (адресов назначения, АН) станций, подключенных к мосту; · направление (порт), к которому станция подключена; · " возраст " с момента последнего обновления этой записи. Так как кадры, предназначенные для станции того же сегмента, не передаются через мост, трафик локализуется в пределах сегментов, что снижает нагрузку на сеть и повышает информационную безопасность. В отличие от повторителя, который действует на физическом уровне и всего лишь повторяет и восстанавливает сигналы, мост анализирует целостность кадров и фильтрует кадры, в том числе испорченные. Мосты не нагружают работой остальные сетевые устройства – они находятся в одной большой сети с единым сетевым адресом и разными MAC-адресами. Для получения информации о местоположении станций мосты изучают адреса станций, читая адреса всех проходящих через них кадров. При получении кадра мост сравнивает адрес назначения с адресами в ТА и, если такого адреса нет, то мост передает кадр по всем направлениям (кроме отправителя кадра). Такой процесс передачи называется "затоплением" (flooding). Если мост находит в ТА адрес назначения, то он сравнивает номер порта из ТА с номером порта, по которому пришёл кадр. Их совпадение означает, что адреса отправителя и получателя расположены в одном сегменте сети, следовательно, кадр не надо транслировать, и мост его игнорирует. Если же адреса отправителя и получателя расположены в разных сегментах, мост отправляет кадр в нужный сегмент сети. Достоинствами мостов являются: · относительная простота и дешевизна объединения ЛВС; · "местные" (локальные) кадры остаются в данном сегменте и не загружают дополнительно другие сегменты; · присутствие мостов прозрачно для пользователей; · мосты автоматически адаптируются к изменениям конфигурации сети; · мосты могут объединять сети, работающие с разными протоколами сетевого уровня; · ЛВС, объединенные мостами, образуют логически единую сеть, т.е. все сегменты имеют один и тот же сетевой адрес; поэтому перемещение компьютера из одного сегмента в другой не требует изменения его сетевого адреса; · мосты, благодаря простой архитектуре, являются недорогими устройствами. Недостатки состоят в следующем: · дополнительная задержка кадров в мостах; · не могут использовать альтернативные пути; из возможных путей всегда выбирается один, остальные – блокируются; · могут способствовать значительным всплескам трафика в сети, например, при передаче кадра, адрес которого еще не содержится в таблице моста; такие кадры передаются во все сегменты; · не могут предотвращать "широковещательные штормы"; · не имеют средств для изоляции ошибочно функционирующих сегментов. Существуют мосты четырех основных типов: · прозрачные (transparent); · транслирующие (translating); · инкапсулирующие (encapsulating); · с маршрутизацией от источника (source routing).
Прозрачные мосты (transparent bridges) предназначены для объединения сетей с идентичными протоколами на канальном и физическом уровнях, например, Ethernet-Ethernet, Token Ring-Token Ring. Прозрачный мост является самообучающимся устройством: в процессе работы для каждого подключенного сегмента автоматически строит таблицу адресов с адресами станций, находящихся в сегменте. Алгоритм функционирования моста: 1) прием поступающего кадра в буфер моста; 2) анализ адреса отправителя (АО) и его поиск в таблице адресов (ТА); 3) если АО отсутствует в ТА, то этот адрес и номер порта, по которому поступил кадр, заносятся в ТА; 4) анализ адреса получателя (АП) и его поиск в ТА; 5) если АП найден в ТА, и он принадлежит тому же сегменту, что и АО (т.е. номер выходного порта совпадает с номером входного порта), кадр удаляется из буфера; 6) если АП найден в ТА, и он принадлежит другому сегменту, кадр передается в этот сегмент (на соответствующий порт); 7) если АП отсутствует в ТА, то кадр передается во все сегменты, кроме того сегмента, из которого он поступил. Транслирующие мосты (translating bridges) предназначены для объединения сетей с разными протоколами на канальном и физическом уровнях, например, Ethernet и Token Ring.
Транслирующие мосты объединяют сети путем манипулирования "конвертами": при передаче кадра из сети Ethernet в сеть TokenRing осуществляется замена заголовка (З ETh) и концевика (К Eth) Ethernet-кадра на заголовок (З TR) и концевик (К TR) TokenRing-кадра и наоборот. Поскольку в разных сетях используются кадры разной длины, а транслирующий мост не может разбивать кадры на части, то каждое сетевое устройство должно быть сконфигурировано для передачи кадров одинаковой длины. Инкапсулирующие мосты предназначены для объединения сетей с одинаковыми протоколами канального и физического уровня через высокоскоростную магистральную сеть с другими протоколами, например 10-мегабитные сети Ethernet, объединяемые сетью FDDI. В отличие от транслирующих мостов, которые преобразуют "конверты" одного типа в другой, инкапсулирующие мосты вкладывают полученные кадры вместе с заголовком и концевиком в другой "конверт", который используется в магистральной сети (отсюда термин "инкапсуляция") и передает его по этой магистрали другим мостам для доставки к узлу назначения. Конечный мост извлекает Ethernet-кадр из FDDI-кадра и передаёт его в сегмент, в котором находится адресат. Длина поля данных FDDI-кадра достаточна для размещения Ethernet-кадра максимальной длины.
Мосты с маршрутизацией от источника (source routing bridges) функционируют на основе информации, формируемой станцией, посылающей кадр, и хранимой в конверте кадра. В этом случае мостам не требуется иметь базу данных с адресами. Каждое сетевое устройство определяет путь к адресату через процесс, называемый "обнаружение маршрута" (route discovery). Упрощенно принцип обнаружения маршрута можно проиллюстрировать на следующем примере. Устройство-источник инициализирует обнаружение маршрута, посылая специальный кадр, называемый "исследовательским" (explorer). Исследовательские кадры используют специальный конверт, распознаваемый мостами с маршрутизацией от источника. При получении такого кадра каждый мост в специально отведенное в кадре место – поле записи о маршруте (routing information field), заносит следующие данные: номер входного порта, с которого был получен кадр, идентификатор моста (Мi) и номер выходного порта, например: 1,М1,3. Далее мост передает этот кадр по всем направлениям, исключая то, по которому кадр был получен. В итоге, станция назначения получает несколько исследовательских кадров, число которых определяется числом возможных маршрутов. Станция назначения выбирает один из маршрутов (самый быстрый, самый короткий или другой) и посылает ответ станции-источнику. В ответе содержится информация о маршруте, по которому должны посылаться все кадры. Станция-отправитель запоминает маршрут и использует его всегда для отправки кадров в станцию назначения. Эти кадры при отправке вкладываются в специальные конверты, понятные для мостов с маршрутизацией от источника. Мосты, получая эти конверты, находят соответствующую запись в списке маршрутов и передают кадр по нужному направлению.
Маршрутизация от источника используется мостами в сетях Token Ring для передачи кадров между разными кольцами.
|
||
|
Последнее изменение этой страницы: 2016-08-06; просмотров: 1375; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.113 (0.008 с.) |