Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Расширение спектра скачкообразным изменением частоты. Прямое последовательное расширение спектра. Множественный доступ с кодовым разделением.Содержание книги
Поиск на нашем сайте
Метод расширения спектра скачкообразной перестройкой частоты (FHSS – Frequency Hopping Spread Spectrum) основан на постоянной смене несущей в пределах широкого диапазона частот. Частота несущей F1, …, FN случайным образом меняется через определенный период времени, называемый периодом отсечки (чип), в соответствии с выбранным алгоритмом выработки псевдослучайной последовательности. На каждой частоте применяется модуляция (FSK или PSK). Передача на одной частоте ведётся в течение фиксированного интервала времени, в течение которого передаётся некоторая порция данных (Data). В начале каждого периода передачи для синхронизации приемника с передатчиком используются синхробиты, которые снижают полезную скорость передачи. В зависимости от скорости изменения несущей различают 2 режима расширения спектра: · медленное расширение спектра – за один период отсечки передается несколько бит; · быстрое расширение спектра – один бит передается за несколько периодов отсечки, то есть повторяется несколько раз. В первом случае период передачи данных меньше периода передачи чипа, во втором – больше. Метод быстрого расширения спектра обеспечивает более надёжную передачу данных при наличии помех за счёт многократного повторения значения одного и того же бита на разных частотах, но более сложен в реализации, чем метод медленного расширения спектра. Прямое последовательное расширение спектра Метод прямого последовательного расширения спектра (DSSS – Direct Sequence Spread Spectrum) состоит в следующем. Каждый «единичный» бит в передаваемых данных заменяется двоичной последовательностью из N бит, которая называется расширяющей последовательностью, а «нулевой» бит кодируется инверсным значением расширяющей последовательности. В этом случае тактовая скорость передачи увеличивается в N раз, следовательно, спектр сигнала также расширяется в N раз. Зная выделенный для беспроводной передачи (линии связи) частотный диапазон, можно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон. Основная цель кодирования DSSS как и FHSS – повышение помехоустойчивости. Чиповая скорость – скорость передачи результирующего кода. Коэффициент расширения – количество битов N в расширяющей последовательности. Обычно N находится в интервале от 10 до 100. Чем больше N, тем больше спектр передаваемого сигнала. DSSS в меньшей степени защищен от помех, чем метод быстрого расширения спектра. Множественный доступ с кодовым разделением Методы расширения спектра широко используются в сотовых сетях, в частности, при реализации метода доступа CDMA (Code Division Multiple Access) – множественный доступ с кодовым разделением. CDMA может использоваться совместно с FHSS, но в беспроводных сетях чаще с DSSS. Каждый узел сети использует собственную расширяющую последовательность, которая выбирается так, чтобы принимающий узел мог выделить данные из суммарного сигнала. Достоинство CDMA заключается в повышенной защищенности и скрытности передачи данных: не зная расширяющей последовательности, невозможно получить сигнал, а иногда и обнаружить его присутствие. Технология WiFi. Технология WiМах. Беспроводные персональные сети. Технология Bluetooth. Технология ZigBee. Беспроводные сенсорные сети. Сравнение беспроводных технологий. Технология WiFi Технология беспроводных ЛВС (WLAN) определяется стеком протоколов IEEE 802.11, который описывает физический уровень и канальный уровень с двумя подуровнями: MAC и LLC. На физическом уровне определены несколько вариантов спецификаций, которые различаются: · используемым диапазоном частот; · методом кодирования; · скоростью передачи данных. Варианты построения беспроводных ЛВС стандарта 802.11, получившего название WiFi. IEEE 802.11 (вариант 1): · среда передачи – ИК-излучение; · передача в зоне прямой видимости; · используются 3 варианта распространения излучения: - ненаправленная антенна; - отражение от потолка; - фокусное направленное излучение («точка-точка»). IEEE 802.11 (вариант 2): · среда передачи – микроволновый диапазон 2,4 ГГц; · метод кодирования – FHSS: до 79 частотных диапазонов шириной 1 МГц, длительность каждого из которых составляет 400 мс (рис.3.49); · при 2-х состояниях сигнала обеспечивается пропускная способность среды передачи в 1 Мбит/с, при 4-х – 2 Мбит/с. IEEE 802.11 (вариант 3): · среда передачи – микроволновый диапазон 2,4 ГГц; · метод кодирования – DSSS c 11-битным кодом в качестве расширяющей последовательности: 10110111000. IEEE 802.11a: 1) диапазон частот – 5 ГГц; 2) скорости передачи: 6, 9, 12, 18, 24, 36, 48, 54 Мбит/с; 3) метод кодирования – OFDM. Недостатки: · слишком дорогое оборудование; · в некоторых странах частоты этого диапазона подлежат лицензированию. IEEE 802.11b: 1) диапазон частот – 2,4 ГГц; 2) скорость передачи: до 11 Мбит/с; 3) метод кодирования – модернизированный DSSS. IEEE 802.11g: 1) диапазон частот – 2,4 ГГц; 2) максимальная скорости передачи: до 54 Мбит/с; 3) метод кодирования – OFDM. В сентябре 2009 года был утверждён стандарт IEEE 802.11n. Его применение позволит повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. Радиус действия беспроводных сетей IEEE 802.11 – до 100 метров. Технология WiМах Технология беспроводного широкополосного доступа с высокой пропускной способностью WiMax представлена группой стандартов IEEE 802.16 и первоначально была предназначена для построения протяженных (до 50 км) беспроводных сетей, относящихся к классу региональных или городских сетей. Стандарт IEEE 802.16 или IEEE 802.16-2001 (декабрь 2001 года), являющийся первым стандартом «точка-многоточка», был ориентирован на работу в спектре от 10 до 66 ГГц и, как следствие, требовал нахождения передатчика и приёмника в области прямой видимости, что является существенным недостатком, особенно в условиях города. Согласно описанным спецификациям, сеть 802.16 могла обслуживать до 60 клиентов со скоростью канала T-1 (1,554 Мбит/с). Позднее появились стандарты IEEE 802.16a, IEEE 802.16-2004 и IEEE 802.16е (мобильный WiMax), в которых было снято требование прямой видимости между передатчиком и приёмником. Основные параметры перечисленных стандартов технологии WiMax. Рассмотрим основные отличия технологии WiМах от WiFi. 1. Малая мобильность. Первоначально стандарт разрабатывался для стационарной беспроводной связи на большие расстояния и предусматривал мобильность пользователей в пределах здания. Лишь в 2005 году был разработан стандарт IEEE 802.16e, ориентированный на мобильных пользователей. В настоящее время ведётся разработка новых спецификаций 802.16f и 802.16h для сетей доступа с поддержкой работы мобильных (подвижных) клиентов при скорости их движения до 300 км/ч. 2. Использование более качественных радиоприемников и передатчиков обусловливает более высокие затраты на построение сети. 3. Большие расстояния для передачи данных требуют решения ряда специфических проблем: формирование сигналов разной мощности, использование нескольких схем модуляции, проблемы защиты информации. 4. Большое число пользователей в одной ячейке. 5. Более высокая пропускная способность, предоставляемая пользователю. 6. Высокое качество обслуживания мультимедийного трафика. Первоначально считалось, что IEEE 802.11 – мобильный аналог Ethernet, 802.16 – беспроводной стационарный аналог кабельного телевидения. Однако появление и развитие технологии WiMax (IEEE 802.16e) для поддержки мобильных пользователей делает это утверждение спорным.
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 1417; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.224.97 (0.006 с.) |