Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы.



Линейная зависимость и независ.строк м-цы.Расм.прямоуг.м-цы Аmxn

l1=(a11,a12,a13,a14,..,a1n) – 1-я строка; l2=(a21,a22,a23,a24,..,a2n) – 2-я строка.

lm=(am,am2,am3,am4,..,amn) Линейной комбинацией строк м-цы наз-ся выраж. λ– «лямбда».

λ 1 * k1+ λ 2k2+… + λ m-1km -1+ λ mkm, где все λ -это числа.

Опред.:строки l1,l2,..,lm – линейно независимые,если их линейная комбинация равна нулевой строке,когда все числа λ =0 (λ 1=0, λ 2=0, λ 3=0,.. λ m=0). Если опред-ль А не=0, то строки линейно независимы.

Опр:строки l1,l2,l3,..lm-1,lm – лин.завис.,если их лин.комбинация = нулевой строке только, когда хотя бы одно из чисел λ 1, λ 2, λ m ≠0.

ТЕОР.о ранге м-цы. Ранг м-цы равен максимальному числу её лин.независ.строк или ст-в м-цы, через которые линейно выражаются все остальные её строки (ст-цы).

Пусть м-ца А размера mxn имеет ранг r(r≤min(m;n)). Это означает,что сущ-ет отличный от нуля минор r-го порядка. Всякий нулевой минор r-го порядка будет наз-ть базисным минором. Пусть для определённости это минор

|a11 a12... a1r|

|a21 a22... a2r|

∆= |... | ≠0.

|ar1 ar2... arr|

Тогда строки м-цы e1,e2,...,er линейно независимы. Предположим противное,т.е.одна из этих строк,напр. еr, явл-ся лин-й комбинацией остальных:

er1e12e2+...+λr-1er-1.

Вычтем из эл-тов r-й строки эл-ты 1-й строки,умноженные на λ1, эл-ты 2-й строки, умноженные на λ2, и т.д., наконец,эл-ты (r-1)-й строки,умнож-е на λr-1. При таких преобразованиях м-цы её опред-ль ∆ не изм-ся, но т.к. теперь r-я строка будет состоять из одних нулей, то ∆=0 – противоречие, и наше предполож.неверно.

6. Система п линейных уравнений с п переменными (общий вид). Матричная форма записи такой системы. Решение системы (определение). Совместные и несовместные, определенные и неопределенные системы линейных уравнений.

8. Система лин.ур-ний:

Аmxn*Хnx1mx1 <=> (ф.1)

(a11x1+a12x2+…+ аnxn=b1

(a21x1+a21x2+… +a2nxn=b2

(….

mx12mx2+… +аmnхn=bm

В матричной форме система имеет вид АХ=В, где

11 a12... a1n)

A= (a21 a22... a2n)

ф.2(............);

(am1 am2.. amn)

(x1)

X= (x2)

ф.3 (....);

(xn)

(b1)

B= (b2)

ф.4(....);

(bm)

называются собственно матрицей системы, матрицами-столбцами переменных и свободных членов.

Решение системы:а) методом обр.м-цы. Ур-е в матричной ф-ме имеет вид АХ+В. Найти обр.м-цу. И найдём Х по ф-ле Х=А-1В,( т.е.х123.)

б) По ф-ле Крамера. Найти определитель системы ^=|A|. Если он не=0,то сист.имеет единств.реш. Далее вычислить опред-ли м-ц ^ 1, ^ 2, ^ 3,полученных их м-цы А,заменой соотв-но 1-го,2-го и 3-го ст-цов столбцом своб.членов. Далее по ф-лам Крамера:х1= ^ 1/ ^, х2= ^ 2/ ^, х3= ^ 3/ ^.

Расширенной м-цей системы наз.м-ца (А|В),полученная из м-цы сист.А добавлением к ней ст-ца членов этой системы,т.е. (А|В)=(ф.2|ф.4)

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B) - с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз. определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист .не определённая.

7. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.

Метод Гаусса – метод послед-го исключ.переменных. Сначала(на 1-м шаге прямого хода Гаусса) из всех ур-ний,кроме 1-го исключается переменная х1. Потом (на 2 шаге) из всех ур-й,кроме первых 2-х исключается переменная х2 и т.д.,пока последнее ур-е не приобретёт вид: С * Хn=bm, если ч-ло С=0, а bm не=0,то с-ма не совместная,т.е.нет решений. Если С=0 и bm=0,т.е. 0*Хn=0,то с-ма неопределённая,т.е. имеет бескон.мн.реш.,то с-ма совместно-определённая. В этом сл-е Хn=bn/C

Полученное зн-е Хn подстав.в предпосл.ур-е,находим Хn-1 и тд.,пока не получ.все неизв-е.

Обратный ход Гаусса. Из м-цы ступенч.вида записывается ур-е. Далее,начиная с конца находим все переменные. Допустим Х4. Подставляем в верхнее и нах-м Х3 и т.д.

Метод Гаусса — Жордана исп-ся для реш.квадр.систем лин.ур-ний, нахождения обрат.м-цы, отыскания ранга м-цы. Метод явл-ся модификацией метода Гаусса. Назван в честь Гаусса и Жордана.

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B) - с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз. определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист .не определённая.

8. Системы m линейных уравнений с n переменными.Теорема Кронекера-Капелли.Условие определённости и неопределённости любой системы линейных уравнений.

Системы m линейных уравнений с n переменными имеет вид:

Произвольные числа, называемые соответственно коэффициентами при переменных и

-свободными членами уравнений.
Решением системы (1) называется такая совокупность n чисел

при подстановке которых каждое уравнение системы обращается в верное равенство

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B) - с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз. определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист .не определённая.

9. Базисные(основные) и свободные(неосновные) переменные системы m линейных уранений с n переменными. Базисное решение.
Любые m переменных системы m линейных уравнений с n переменными (m < n) называются основными, если определитель матрицы коэффициентов при них отличен от нуля. Тогда остальные m-n переменных называются неосновными (или свободными). Базисным решением системы m линейных уравнений c n переменными (m < n) называется всякое ее решение, в котором все неосновные переменные имеют нулевые значения.

 

 

10. Системы линейных однородных уравнений и её решения.Условия существования ненулевых решений системы.

Системы линейных однородных уравнений.

Система m линейных уравнений с n переменными называется системой линейных однородных уравнений, если все их свободные члены равны нулю. Такая система имеет вид:


Система линейных однородных уравнений всегда совместна, так как она всегда имеет, по крайней мере, нулевое (или тривиальное) решение (0; 0;...; 0).

Систему (8) можно записать а виде:

А*Х=0 (9).

Если в системе (8) m=n, а ее определитель отличен от нуля, то такая система имеет только нулевое решение, как это следует из теоремы и формул Крамера. Ненулевые решения, следовательно, возможны лишь для таких систем линейных однородных уравнений, в которых число уравнений меньше числа переменных или при их равенстве, когда определитель системы равен нулю.

Иначе: система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг ее матрицы коэффициентов при переменных меньше числа переменных, т.е. при r(A)<n.

 

11. Векторы на плоскости и в пространстве (геометрические векторы). Линейные операции над векторами(сложение,умножение вектора на число).Коллинеарные и компланарные векторы.
Вектором называется направленный отрезок, имеющий определенную длину, т. е. отрезок определенной длины, у которого одна из ограничивающих его точек принимается за начало, а вторая — за конец.

Если А — начало вектора и В — его конец, то вектор обозначается символом

Обычно векторы обозначают одной малой латинской буквой со стрелкой либо выделяют жирным шрифтом: , a.

Вектор изображается отрезком со стрелкой на конце:

Длина вектора называется его модулем и обозначается символом

Вектор , у которого называется единичным.

Вектор называется нулевым (обозначается ), если начало и конец его совпадают.

Нулевой вектор не имеет определенного направления и имеет длину, равную нулю.

Векторы и , расположенные на одной прямой или на параллельных прямых, называются коллинеарными. Нулевой вектор коллинеарен любому вектору.

Два вектора и называются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление.

В этом случае пишут

Все нулевые векторы считаются равными.

Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, помещая его начало в любую точку пространства (в частности, плоскости). Такой вектор называется свободным.

Два коллинеарных вектора (отличные от нулевых векторов), имеющие равные модули, но противоположно направленные, называются противоположными.

Вектор, противоположный вектору , обозначается .

Для вектора противоположным является вектор .

Векторы a1, a2,..., an называются компланарными, если каждый из них параллелен одной и той же плоскости.

Любые два вектора всегда компланарны.

Очевидно, если три вектора компланарны, то их можно изобразить направленными отрезками, лежащими в одной плоскости.

Сумма векторов

Пусть даны два вектора а = OA(вектор) и b = OB(вектор) (рис. 5).

От точки А отложим отрезок АС такой, что AС(вектор) = b. Тогда, вектор с = OС(вектор) называется суммой векторов а и b и обозначается а + b.

Таким образом, OA(вектор) + AС(вектор) = OС(вектор). Это равенство называют правилом треугольника сложения двух векторов.

Oчевидно, что это правило справедливо и в том случае, когда точки О, А и В лежат на одной прямой (рис. 6, 7). В частности, а + 0 = а.

Умножение вектора на число

Произведением ненулевого вектора а на число х =/= 0 называется вектор, длина которого равна | x | • | а |, а направление совпадает с направлением а, если х > 0, и противоположно ему, если х < 0.

Произведением нулевого вектора на любое число х и произведением любого вектора на число нуль называется нулевой вектор.

Произведение вектора а на число х обозначается х • а (числовой множитель пишется слева).

Согласно определению | x • а | = | x | • | а | для любого вектора а и любого числа х.

 

12. Скалярное произведение двух векторов(определение) и его выражениев координатной форме. Угол между векторами.

 

13. n-мерный вектор. Линейная комбинация, линейная зависимость и независимость векторов.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 287; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.228.88 (0.044 с.)