ТОП 10:

Виды погрешностей измерений.



Свойства случайных погрешностей.

Любое измерение сопровождается погрешностью.

Погрешность результата измерений это разность между измеренным и истинным (точным) значением определяемой величины.

(это разность между тем, что есть и тем, что должно быть).

Виды погрешностей:

- грубые;

- систематические;

- случайные.

Грубыепогрешности, величина которых совершенно недопустима при данных условиях измерений.

Возникают вследствие просчётов, промахов, например:

- просчёт количества отложений мерной ленты при измерении расстояний;
- просчёт в снятии отсчёта по лимбу теодолита в 1,10";

- просчёт при покупках на 1, 10 руб.

Грубые ошибки выявляются и устраняются избыточными измерениями.

Систематические

- погрешности, которые входят в каждый результат по определённому закону.

Могут подразделяться на:

- постоянные по знаку и величине;

- переменные по знаку и величине.

Примеры:

— измеряется расстояние (линия L) лентой длиной L=20м., которой больше или меньше на величину ;

 

Конечный результат измерения будет отличаться на величину.

       
 
 


где L –длина линии.

 

- длина ленты проверялась при температуре ,а измерения проводятся при температуре t. Результат измерений будет содержать погрешность пропорциональную разности температур и длине линии.

 


 

Причины появления систематических ошибок необходимо изучать в каждом отдельном случае. Влияние их на результат измерения должен исключаться или сводится к минимуму путём введения поправок в результат измерения.

 

Случайные погрешности, возникновение которых не удаётся подчинить определённым законом.

Случайные погрешности неизбежны.

Источники случайных ошибок:

- прибор

- наблюдатель

- внешние условия.

Уменьшение влияния случайных ошибок может быть достигнуто совершенствованием приборов, повышением квалификации.

 

Обозначения:

 

- точное (истинное) значение величин Х

- измеренное значение величин l

- случайная погрешность

       
 
 


или

Если l>Х то (+ ), если lто (- )

 

В процессе геодезических измерений точность снятия отсчётов угломерных, мерных (линейных) выше точности результата измерений, следовательно, имеет место равномерное распределение случайных погрешностей.

 

 

График функции плотности вероятного нормального распределения случайных погрешностей. (Кривая Гаусса).

 

 

Свойства случайных погрешностей равноточных измерений


 

 

Анализ большого ряда измерений позволил установить следующие (4) свойства случайных погрешностей.

1. Свойство ограниченности

Случайные погрешности по абсолютной величине не могут превышать определённого предела, т.е. переходят в разряд грубых погрешностей.

 


2. Свойство симметрии

Равные по абсолютной величине положительные и отрицательные случайные
погрешности одинаково возможны, т.е. может быть.

 

 

3. Свойство компенсации

Среднее арифметическое из случайных погрешностей равноточных измерений одной и той же величины стремится к нулю при возрастании числа измерений.

Это свойство можно выразить математически

 

где [ ] — знак суммы введённый Гауссом.

 

4. Свойство плотности

Малые по абсолютной величине погрешности встречаются чаще, чем большие.

малые чаще больших

На основании этих свойств основаны:

- способы оценки точности результатов измерений

- служат основой для определения наиболее надёжных значений измеряемой величины.

2.Мерыточности равноточных измерений.

 

О точности измерений можно приблизительно судить по рассеиванию (разбросу) результатов измерений, чем больше расходятся между собой результаты измерений, тем ниже точность измерений.

Основными мерами (характеристиками) точности измерений в геодезии являются:
— средняя погрешность;

— средняя квадратическая погрешность;

— предельная погрешность;

— относительная погрешность.

Средняя погрешность среднее арифметическое из абсолютных величин
случайных погрешностей равноточных измерений.

 


где (тэта)

- абсолютное значение случайной погрешности
n— число измерений.

ПримерИмеем два ряда погрешностей

 

I ряд: -1; +2; -6; +7; -1; [ ]=17

II ряд: -4;+2; -4;+3; -4; [ ]=17

Средняя погрешность отдельного измерения будет равна:

для I ряда

для II ряда

Анализ: — средние погрешности этих рядов одинаковы;

6

 

— отдельные случайные погрешности в 1 ряду крупнее случайных погрешностей второго ряда;

— крупные погрешности снижают точность измерений.

Следовательно, средняя погрешность недостаточно чувствительна к крупным погрешностям, она сглаживает их влияние.







Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.172.100.232 (0.008 с.)