Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Морфология и структура вирусов

Поиск

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

5) облигатный паразитизм вирусов реализуется на генетическом уровне;

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

5) содержащей две одинаковые однонитевые РНК.

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

Взаимодействие вирусов с клеткой хозяина

Взаимодействие идет в единой биологической системе на генетическом уровне.

Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).

После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.

Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).

После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.

Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.

Культивирование вирусов

Основные методы культивирования вирусов:

1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных наблюдаются иммунологические сдвиги. Однако далеко не все вирусы можно культивировать в организме животных;

2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7—10 дней, а затем используют для культивирования. В этой модели все типы зачатков тканей подвержены заражению. Но не все вирусы могут размножаться и развиваться в куриных эмбрионах.

В результате заражения могут происходить и появляться:

1) гибель эмбриона;

2) дефекты развития: на поверхности оболочек появляются образования – бляшки, представляющие собой скопления погибших клеток, содержащих вирионы;

3) накопление вирусов в аллантоисной жидкости (обнаруживают путем титрования);

4) размножение в культуре ткани (это основной метод культивирования вирусов).

Различают следующие типы культур тканей:

1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;

2) первично трипсинизированные – подвергшиеся первичной обработке трипсином; эта обработка нарушает межклеточные связи, в результате чего выделяются отдельные клетки. Источником являются любые органы и ткани, чаще всего – эмбриональные (обладают высокой митотической активностью).

Для поддержания клеток культуры ткани используют специальные среды. Это жидкие питательные среды сложного состава, содержащие аминокислоты, углеводы, факторы роста, источники белка, антибиотики и индикаторы для оценки развития клеток культуры ткани.

О репродукции вирусов в культуре ткани судят по их цитопатическому действию, которое носит разный характер в зависимости от вида вируса.

Основные проявления цитопатического действия вирусов:

1) размножение вируса может сопровождаться гибелью клеток или морфологическими изменениями в них;

2) некоторые вирусы вызывают слияние клеток и образование многоядерного синцития;

3) клетки могут расти, но делиться, в результате чего образуются гигантские клетки;

4) в клетках появляются включения (ядерные, цитоплазматические, смешанные). Включения могут окрашиваться в розовый цвет (эозинофильные включения) или в голубой (базофильные включения);

5) если в культуре ткани размножаются вирусы, имеющие гемагглютинины, то в процессе размножения клетка приобретает способность адсорбировать эритроциты (гемадсорбция).

1. Характеристики тканевых культур
2. Цитопатическое действие вирусов

1.ДЛЯ культивирования вирусов используют ряд методов. Это культивирование в организме экспериментальных животных, развивающихся куриных вибрионах и культурах тканей (чаще — эмбриональные ткани или опухолевые клетки). Для выращивания клеток тканевых культур используют многокомпонентные питательные среды (среда 199, среда Игла и др.). Они содержат индикатор измерения рН среды и антибиотики для подавления возможного бактериального загрязнения.
Культуры тканей могут быть переживающими, в которых жизнеспособность клеток удается сохранить лишь временно, и растущими, в которых клетки не только сохраняют жизнедеятельность, но и активно делятся.
В роллерных культурах клетки ткани фиксированы на плотной основе (стекло) — чаще в один слой (однослойные), а в суспензированных —взвешены в жидкой среде. По количеству пассажей, выдерживаемых растущей культурой тканей, среди них различают:
• первичные (первично-трипсинизированные) культуры тканей, которые выдерживают не более 5—10 пассажей;
• полуперевиваемые культуры тканей, которые поддерживаются не более чем в 100 генерациях;
• перевиваемые культуры тканей, которые поддерживаются в течение неопределенно длительного срока в многочисленных генерациях.
Чаще всего используются однослойные первично-перевиваемые и перевиваемые тканевые культуры.
2. О размножении вирусов в культуре ткани можно судить по ци-топатическому действию (ЦПД):
• деструкции клеток;
• изменению их морфологии;
• формированию многоядерных симпластов или синтиция в результате слияния клеток.
• в клетках культуры ткани при размножении вирусов могут образовываться включения — структуры, не свойственные нормальным клеткам.
Включения выявляются в окрашенных по Романовскому-Гимзе мазках из зараженных клеток. Они бывают эозинофильные и базофильные.
По локализации в клетке различают:
• цитоплазматические;
• ядерные;
• смешанные включения.
Характерные ядерные включения формируются в клетках, зараженных вирусами герпеса (тельца Каудри), цитомегалии и полиомы, аденовирусами, а цитоплазматические включения — вирусами оспы (тельца Гварниери и Пашена), бешенства (тельца Бабеша-Негри) и др.
О размножении вирусов в культуре ткани также можно судить по методу «бляшек» (негативных колоний). При культивировании вирусов в клеточном монослое под агаровым покрытием на месте пораженных клеток образуются зоны деструкции моно-сом — так называемые стерильные пятна, или бляшки. Это дает возможность не только определить число вирионов в 1 мл среды (считается, что одна бляшка является потомством одного вириона), но и дифференцировать вирусы между собой по феномену бляшкообразования.
Следующим методом, позволяющим судить о размножении вирусов (только гемагглютинирующих) в культуре ткани, можно считать реакцию гемадсорбции. При культивировании вирусов, обладающих гемагглютжирующей активностью, может происходить избыточный синтез гемагглютининов. Эти молекулы экспрессируются на поверхности клеток культуры ткани, и клетки культуры ткани приобретают способность адсорбировать на себе эритроциты — феномен гемадсорбции. Молекулы гемагглютинина накапливаются и в среде культивирования, это приводит к тому, что культуральная жидкость (в ней накапливаются новые вирионы) приобретет способность вызывать гемагглютинацию.
Наиболее распространенным методом оценки размножения вирусов в культуре ткани является метод «цветной пробы». При размножении в питательной среде с индикатором незараженных
клеток культуры ткани вследствие образования кислых продуктов метаболизма она изменяет свой цвет. При репродукции вируса нормальный метаболизм клеток нарушается, кислые продукты не образуются, среда сохраняет исходный цвет.

 



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 298; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.5.216 (0.012 с.)