Лекция №9 «Характеристики и типы каналов передачи данных» 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекция №9 «Характеристики и типы каналов передачи данных»



1. Характеристики и типы каналов передачи данных

Применяемые в вычислительных сетях каналы передачи данных классифицируются по ряду признаков. Во-первых, по форме представления информации в виде электрических сигналов каналы подразделяют на цифровые и аналоговые. Во-вторых, по физической природе среды передачи данных различают каналы связи проводные (обычно медные), оптические (как правило, волоконно-оптические), беспроводные (инфракрасные и радиоканалы). В-третьих, по способу разделения среды между сообщениями выделяют упомянутые выше каналы с временным (TDM) и частотным (FDM) разделением.

Одной из основных характеристик канала является его пропускная способ­ность (скорость передачи информации, т. е. информационная скорость), определяемая полосой пропускания канала и способом кодирования данных в виде электрических сигналов.

Информационная скорость измеряется количеством битов информации, переданных в единицу времени. Наряду с информационной оперируют бобовой (модуляционной) скоростью, которая измеряется в бодах, т. е. числом изменений дискретного сигнала в единицу времени. Именно бодовая скорость определяется полосой пропускания линии. Если одно измене­ние значения дискретного сигнала соответствует нескольким битам, то информационная скорость превышает бодовую. Действительно, если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций сигнала равно 2N. Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составляет 4800 бит/с. С ростом длины линии связи увеличивается затухание сигнала и, следовательно, уменьшаются полоса пропускания и информационная скорость.

Максимально возможная информационная скорость Ксвязана с полосой пропускания Fканала связи формулой Хартли—Шеннона (предполагается, что одно изменение значения сигнала приходится на log2 k бит, где к— число возможных дискретных значений сигнала

V=2Flog2k

так как V = Iog2k/t (здесь k < 1 + А, где А — отношение сигнал — помеха);

t — длительность переходных процессов, приблизительно равная ЗТВ, а TB=1/(2πF)

Проводные линии связи в вычислительных сетях представлены коаксиальными кабелями и витыми парами проводов.

Используются коаксиальные кабели: «толстый» диаметром 12,5 мм и «тонкий» диаметром 6,25 мм. «Толстый» кабель имеет меньшее затухание, лучшую помехозащищенность, что обеспечивает возможность работы на больших расстояниях, но он плохо гнется, что затрудняет прокладку соединений в помещениях, и дороже «тонкого».

Существуют экранированные (STP — Shielded Twist Pair) и неэкранированные (UTP — Unshielded Twist Pair) пары проводов. Экранированные пары сравнительно дороги, поэтому чаще используются неэкранированные пары, имеющие несколько категорий (типов). Обычный телефонный кабель — пара категории 1. Пара категории 2 может использоваться в сетях с пропускной способностью до 4 Мбит/с. Витые пары имеют категории, начиная с третьей. Для сетей Ethernet (точнее, для ее варианта 10Base-T) разработана пара категории 3, а для сетей Token Ring — пара категории 4. Более совершенными являются неэкранированные витые пары категорий 5 и 6.

Витые пары иногда называют сбалансированной линией в том смысле, что в двух проводах линии передаются одни и те же уровни сигнала (по отношению к «земле»), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом. Синфазные помехи при этом самокомпенсируются.

Оптические линии связи реализуются в виде ВОЛС, которые являются основой высокоскоростной передачи данных, особенно на большие расстояния. Каналы передачи данных в ЛВС представлены в основном проводными (медными) линиями, поскольку неэкранированные витые пары дешевле BOЛC и удобнее при прокладке кабельной сети. Но для реализации высокоскоростных магистральных каналов в корпоративных и территориальных сетях ВОЛС уже находится вне конкуренции.

Конструкция ВОЛС — кварцевый сердечник диаметром 10 мкм, покрытый отражающей оболочкой с внешним диаметром 125... 200 мкм. Типичные характеристики ВОЛС: работа на волнах длиной 0,83... 1,55 мкм; затухание 0,7 дБ/км; полоса частот—до 2 ГГц; ориентировочная цена 4... 5 долл. за 1 м. Пре­дельные расстояния D для передачи данных по ВОЛС (без ретрансляции) зависят от длины волны излучения X: при X = 850 нм имеем D = 5 км, а при "К = 1300 нм имеем D = 50 км, но аппаратурная реализация дороже.

К числу новых стандартов для высокоскоростных магистралей передачи данных относится стандарт цифровой синхронной иерархии SDH (Synchronous Digital Hierachy). В сетях SDH используют ВОЛС в качестве линий передачи данных. Стандарт устанавливает структуру фреймов, на которые разбивается поток передаваемых данных. Эта структура названа транспортным модулем.

Рассмотрим транспортный модуль STM-1. В нем фрейм состоит из девяти строк и 270 колонок, каждая позиция содержит 1 байт. В фрейме выделены три зоны. Первая зона содержит теги для разделения фреймов, для коммутации и управления потоком в промежуточных узлах (регенераторах оптических сигналов, устанавливаемых при больших длинах сегментов линии). Данные для управления в концевых узлах находятся во второй зоне. Третья зона содержит передаваемую информацию.

Информация конкретного сообщения может занимать ту или иную часть фрейма, называемую контейнером. Чем больше длина контейнера, тем выше информационная скорость. Предусмотрено несколько типов контейнеров со скоростями 1,5; 6; 45 и 140 Мбит/с (по американскому стандарту) или 2; 6; 34 и 140 Мбит/с (по европейскому). Общая скорость передачи для STM-1 равна 155,52 Мбит/с.

Кроме STM-1 стандартом предусмотрены также модули STM-0, STM-4 и STM-16 со скоростями 51, 622 и 2488 Мбит/с соответственно.

2. Радиоканалы

В беспроводных радиоканалах передача информации осуществляется с помощью радиоволн. В информационных сетях используются диапазоны от сотен мегагерц до десятков гигагерц.

Для организации канала передачи данных в диапазонах дециметровых волн (902... 928 МГц и 2,4... 2,5 ГГц) необходима регистрация в Госсвязьнадзоре. Работа в диапазоне 5,725... 5,85 ГГц пока лицензирования не требует.

Обратим внимание на то, что чем выше рабочая частота, тем больше емкость (число каналов) системы связи, но тем меньше предельные расстояния, на которых возможна прямая передача между двумя пунктами без ретрансляторов. Первая из причин и порождает тенденцию к освоению новых более вы­сокочастотных диапазонов.

Радиоканалы используются в качестве альтернативы кабельным системам в локальных сетях и при объединении сетей отдельных подразделений и предприятий в корпоративные сети.

Радиоканалы являются необходимой составной частью также в спутниковых и радиорелейных системах связи, применяемых в территориальных сетях, в сотовых системах мобильной связи. Радиосвязь используют в корпоративных и локальных сетях, если затруднена прокладка других каналов связи. Во многих случаях построения корпоративных сетей применение радиоканалов оказывается более дешевым решением по сравнению с другими вариантами.

Радиоканал либо выполняет роль моста между подсетями (двухточечное соединение), либо является общей средой передачи данных в ЛВС по методу МДКН/ОК, либо служит соединением между центральным и терминальными узлами в сети с централизованным управлением, либо соединяет спутник с наземными станциями в спутниковом канале связи.

Радиомосты используют для объединения между собой кабельных сегментов и отдельных ЛВС в пределах прямой видимости и организации магистральных каналов в опорных сетях. Они выполняют ретрансляцию и фильтрацию пакетов. При этом имеет место двухточечное соединение с использованием направленных антенн, дальность в пределах прямой видимости (обычно до 15...20 км с расположением антенн на крышах зданий). Мост имеет два адап­тера: один для формирования сигналов в радиоканале, другой — в кабельной подсети.

В случае использования радиоканала в качестве общей среды передачи данных в ЛВС сеть называют RadioEthernet, обычно ее применяют внутри зданий. В состав аппаратуры входят приемопередатчики и антенны. Связь осуществляется на частотах от одного до нескольких гигагерц. Расстояния между узлами несколько десятков метров.

В соответствии со стандартом ШЕЕ 802/11 возможны два способа передачи двоичной информации в ЛВС, их цель заключается в обеспечении защиты информации от нежелательного доступа.

Первый способ называют методом прямой последовательности (DSSS — Direct Sequence Spread Spectrum). В нем защита информации основана на избыточности — каждый бит данных представлен последовательностью из 11 элементов (чипов). Эта последовательность создается с помощью алгоритма, известного участникам связи, и поэтому ее можно дешифрировать при приеме. Сохранение высокой скорости обеспечивается расширением полосы пропускания (в DSSS по ШЕЕ 802/11в информационная скорость может доходить до 11 Мбит/с, полоса пропускания составляет 22 МГц в диапазоне частот 2,4 ГГц). Отметим, что избыточность повышает помехоустойчивость. Действительно, помехи обычно имеют более узкий спектр, чем 22 МГц, и могут исказить часть чипов, но высока вероятность того, что по остальным чипам значение бита будет восстановлено.

При этом не нужно стремиться к большим значениям отношения сигнал — помеха, сигнал становится шумоподобным, что, во-первых, обусловливает дополнительную защиту от перехвата и, во-вторых, не создает помех, мешающих работе другой радиоаппаратуры.

Второй способ — метод частотных скачков (FHSS — Frequency Hopping Spread Spectrum). Согласно этому методу полоса пропускания по ШЕЕ 802/11 делится на 79 поддиапазонов. Передатчик периодически (с шагом 20... 400 мс) переключается на новый поддиапазон, причем алгоритм изменения частот известен только участникам связи и может изменяться, что и затрудняет несанкционированный доступ к данным.

Вариант использования радиоканалов для связи центрального и периферийного узлов отличается тем, что центральный пункт имеет ненаправленную антенну, а в терминальных пунктах при этом применяются направленные антенны. Дальность связи составляет также десятки метров, а вне помещений — сотни метров.

Спутниковые каналы являются частью магистральных каналов передачи данных. В них спутники могут находиться на геостационарных (высота 36 тыс. км) или низких орбитах. В случае геостационарных орбит заметны задержки (около 500 мс) на прохождение сигналов к спутнику и обратно. Возможно покрытие поверхности всего земного шара с помощью четырех спутников. В низкоорбитальных системах обслуживание конкретного пользователя происходит попеременно разными спутниками. Чем ниже орбита, тем меньше площадь покрытия, и, следовательно, требуется или большее число наземных станций, или межспутниковая связь, что, естественно, приводит к утяжелению спутни­ка. Число спутников также значительно больше (обычно несколько десятков).

В оборудование беспроводных каналов передачи данных входят сетевые адаптеры и радиомодемы, поставляемые вместе с комнатными антеннами и драйверами. Они различаются способами обработки сигналов, характеризуются частотой передачи, пропускной способностью, дальностью связи. Радио­модем подключают к цифровому ООД через стандартный интерфейс.

В вычислительных сетях САПР в основном используются цифровые каналы передачи данных. Однако применяют и аналоговые каналы, поскольку таковыми являются телефонные сети, которые можно использовать в качестве магистральных каналов или абонентских линий.

3. Аналоговые каналы

В телефонных каналах общего пользования полоса пропускания составляет 0,3... 3,4 кГц (каналы с такой полосой пропускания называют каналами тональной частоты), что соответствует спектру человеческой речи.

Для передачи дискретной информации по каналам тональной частоты необходимы устройства преобразования сигналов, согласующие характеристики дискретных сигналов и аналоговых линий. Такое преобразование называют модуляцией при передаче и демодуляцией при приеме, и оно осуществляется с помощью специальных устройств — модемов.

Модуляция осуществляется с помощью воплощения сигнала, выражающего передаваемое сообщение, в некотором процессе, называемом переносчиком и

приспособленном к реализации в данной среде. Переносчик в системах связи

представляет собой электромагнитные колебания U некоторой частоты, называемой несущей частотой:

где Um — амплитуда; — частота; —фаза колебаний несущей.

Если сообщение переносится на амплитуду Um, то модуляцию называют амплитудной (AM), если на частоту — частотной (ЧМ) и если на фазу — фазовой (ФМ).

Для повышения информационной скорости применяют квадратурно-амплитудную модуляцию (QAM — Quadrature Amplitude Modulation, ее также называют квадратурно-импульсной), которая основана на передаче одним элементом модулированного сигнала n бит информации, где n= 4... 8 (т. е. используются 16... 256 дискретных значений амплитуды). Однако, чтобы правильно различать эти значения амплитуды, требуется малый уровень помех (отношение сигнал —помеха не менее 12 дБ при n=4). При меньших отношениях сигнал — помеха лучше применять фазовую модуляцию с четырьмя или восемью дискретными значениями фазы для представления 2 или 3 бит информации соответственно.

Современные высокоскоростные модемы построены в соответствии с протоколами V.32, V.34, V.90 или V.92. Например, в протоколе V.34 скорости составляют от 2,4 до 28,8 кбит/с с шагом 2,4 кбит/с. Протокол предусматривает адаптацию передачи под конкретную обстановку при изменении несущей в пределах 1600... 2000 Гц, а также автоматическое предварительное согласование способов модуляции в вызывающем и вызывном модемах. В протоколе V34.bis скорости могут достигать 33,6 кбит/с. В последнее время стали выпускаться модемы на 56 кбит/с по технологиям, названным х2 и V.90-92.

4. Цифровые каналы

Для передачи аналоговых сигналов по цифровым каналам связи применяют импульсно-кодовую модуляцию (ИКМ), или PCM (Pulse Code Modulation).

Этот вид модуляции сводится к измерению амплитуды аналогового сигнала в моменты времени, отстоящие друг от друга на dt, и к кодированию этих амплитуд цифровым кодом. Согласно теореме Котельникова, величину dt определяют следующим образом: для неискаженной передачи должно быть не менее двух отсчетов на период колебаний, соответствующий высшей оставляющей в частотном спектре сигнала. Требуемую пропускную способность определяют, исходя из условия обеспечения передачи голоса с частотным диапазоном до 4 кГц при кодировании восемью (или семью) битами. Отсюда получаем, что частота отсчетов (передачи байтов) равна 8 кГц, т. е. биты передаются с частотой 64 кГц (или 56 кГц при семибитовой кодировке).

В цифровых каналах для представления двоичной информации преимущественно используют самосинхронизирующийся манчестерский код. Примерманчестерского кода представлен на рис. 2.7. Самосинхронизация избавляет от необходимости иметь дополнительную линию связи для передачи синхронизирующих импульсов. Самосинхронизация обеспечивается благодаря формированию синхроимпульсов из перепадов, имеющихся в каждом такте манчестерского кода.

Различают несколько технологий связи, основанных на цифровых каналах.

В качестве магистральных каналов передачи данных в США и Японии применяют стандартную многоканальную систему Т1 (иначе DS-1). Она включает в себя 24 цифровых канала, называемых DS-0 (Digital Signal-0). В каждом канале применена ИКМ с частотой следования отсчетов 8 кГц и квантованием сигналов по 28 = 256 уровням, что обеспечивает скорость передачи 64 кбит/с на один канал или 1554 кбит/с на аппаратуру Т1. В Европе широко распространена аппаратура Е1 с 32 каналами по 64 кбит/с, т. е. с общей скоростью 2048 кбит/с. Применяются также каналы ТЗ (или DS-3), состоящие из 28 каналов Т1 (45 Мбит/с); Т4, объединяющие 6 каналов ТЗ, их аналоги ЕЗ и Е4 соответственно. Они находят преимущественное распространение в частных высокоскоростных сетях.

В канале Т1 использовано временное мультиплексирование (TDM). Все 24 канала передают в мультиплексор по одному байту, образуя 192-битный кадр с добавлением одного бита синхронизации. Суперкадр составляют 24 кадра. В нем имеются контрольный код и синхронизирующая комбинация.

Сборку информации из нескольких линий и ее размещение в магистрали Т1 осуществляет мультиплексор. Канал DS-0 (один слот) соответствует одной из входных линий, т. е. реализуется коммутация каналов.

Некоторые фультиплексоры позволяют маршрутизировать потоки данных, направляя их в другие мультиплексоры, связанные с другими каналами Т1, хотя собственно каналы Т1 называют некоммутируемыми.

При обычном мультиплексировании каждому соединению выделяется определенный слот (например, канал DS-0). Если же этот слот не используется из-за недогрузки канала по этому соединению, но по другим соединениям трафик значительный, то эффективность будет невысокой. Загружать свободные слоты или, другими словами, динамически перераспределять слоты можно, используя так называемые статистические мультиплексоры на основе микропроцессоров. В этом случае временно весь канал DS-1 или его часть отдается одному соединению с указанием адреса назначения.

В современных сетях важное значение имеет передача как данных, представляемых дискретными сигналами, так и аналоговой информации (например, голос и видеоизображения первоначально имеют аналоговую форму). Поэтому для многих применений современные сети должны быть сетями интегрального обслуживания. Наиболее перспективными сетями интегрального обслуживания являются сети с цифровыми каналами передачи данных, например сети ISDN (Integrated Service Digital Network).

Сети ISDN могут быть коммутируемыми и некоммутируемыми. Различают обычные ISDN со скоростями от 56 кбит/с до 1,54 Мбит/с и широкополосные ISDN (Broadband ISDN, или B-ISDN) со скоростями 155... 2048 Мбит/с.

Применяют два варианта обычных сетей ISDN — базовый и специальный. В базовом варианте имеются два канала по 64 кбит/с (эти каналы называют 5-каналами) и один служебный канал с 16 кбит/с (D-канал). В специальном варианте — 23 канала В по 64 кбит/с и один или два служебных канала D по 16 кбит/с. Каналы В можно использовать для передачи как закодированной голосовой информации (коммутация каналов), так и пакетов. Служебные каналы используются для сигнализации — передачи команд, в частности для вызова соединения.

Очевидно, что для реализации технологий Т1, ТЗ, ISDN необходимо выбирать среду передачи данных с соответствующей полосой пропускания.

Схема ISDN показана на рис. 2.8. Здесь S-соединение представляет собой четырехпроводную витую пару. Если оконечное оборудование не имеет интерфейса ISDN, то его подключают к S-линии через специальный адаптер ТА. Устройство NT2 объединяет S-линии в одну Г-шину, которая имеет два прово да от передатчика и два — к приемнику. Устройство NT1 реализует схему эхокомпенсации (рис. 2.9) и служит для интерфейса Г-шины с обычной телефонной двухпроводной абонентской линией U.

Для подключения клиентов к узлам магистральной сети с применением на ≪последней миле≫ обычного телефонного кабеля чаще всего используют цифровые абонентские линии xDSL (наряду с ISDN-каналами). К числу xDSL относят HDSL (High-bit-rate Digital Subcriber Line), SDSL (Single Pair Symmetrical Digital Subcriber Line), ADSL (Asymmetric Digital Subcriber Line) и др. Например, в HDSL используют две пары проводов, амплитудно-фазовая модуляция без несущей обеспечивает пропускную способность до 2 Мбит/с на расстоянии до 5,4 км. Применяемые для кодирования устройства также называют модемами. Собственно ISDN можно рассматривать как разновидность xDSL.

5. Организация дуплексной связи

Для организации дуплексной связи, т. е. одновременной передачи информации по линии в обоих направлениях, используют следующие способы:

четырехпроводная линия связи — одна пара проводов для прямой и другая — для обратной передачи, что, естественно, дорого;

частотное разделение — прямая и обратная передачи ведутся на разных частотах, но при этом полоса для каждого направления сужается более чем вдвое по сравнению с полосой симплексной (однонаправленной) связи;

эхо-компенсация—при установлении соединения с помощью посылки зондирующего сигнала определяются параметры (запаздывание и мощность) эха — отраженного собственного сигнала; в дальнейшем из принимаемого сигнала вычитается эхо собственного сигнала (см. рис. 2.9).



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 2351; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.170.17 (0.033 с.)