Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Спецификация Plug and Play для шины ISAСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Аппаратно-программную спецификацию «Plug and Play ISA Specification» выпустили компании Intel и Microsoft в 1994 г. Она обеспечивает решение задач изоляции карт ISA, программного распределения системных ресурсов, конфигурирования и передачи параметров операционной системе и прикладному ПО. Вышеперечисленные задачи решаются для карт PnP, которые могут работать и в окружении так называемых традиционных карт (Legacy Cards). Поскольку описание программной части этой спецификации достаточно объемно и выходит за рамки данной книги, рассмотрим принципы реализации PnP в основном с точки зрения аппаратных средств. Конфигурирование в системе PnP состоит из следующих шагов. 1. Производится изоляция одной карты от всех остальных. 2. Карте назначается номер CSN (Card Select Number — селективный номер карты), фигурально выражаясь, «приделывается ручка» (Assign a handle), за которую ее можно «ухватить» дальнейшим командам PnP. 3. С карты считываются данные о сконфигурированных и поддерживаемых ресурсах. Эти шаги повторяются для всех карт, после чего выполняются завершающие шаги. 4. Производится распределение (арбитраж) системных ресурсов, выделяемых каждой карте. 5. Каждая карта конфигурируется согласно выбранному распределению ресурсов и активируется (переводится в рабочий режим). Все шаги конфигурирования выполняет процедура POST (если BIOS имеет поддержку PnP) или операционная система при загрузке. PnP BIOS может ограничиться конфигурированием и активацией только устройств, участвующих в загрузке, оставляя конфигурирование и активацию дополнительных устройств операционной системе. BIOS без поддержки PnP может использовать необходимые для загрузки устройства, сконфигурированные с параметрами по умолчанию, а изоляцией карт, сбором информации и конфигурированием займется операционная система при загрузке. Вариантов много, но все они опираются на единые методы взаимодействия с картами ISA PnP. Конфигурирование выполняется в специальном состоянии плат, в которое их всех можно программно перевести с помощью специального ключа инициализации, защищающего конфигурационную информацию от случайного разрушения. Для конфигурирования карт PnP необходимо всего три 8-битных системных порта (табл. 6.7), с которыми процессор может общаться, применяя инструкции ввода-вывода с однобайтной передачей данных. Карты PnP должны использовать 12-битное декодирование адреса ввода-вывода, а не 10-битное, как это принято в традиционных картах ISA.
Таблица 6.7. Системные порты ISA PnP
Порт ADDRESS используется для адресации регистров PnP — в него записывают индекс требуемого регистра (см. ниже пункт «Конфигурирование карт») перед обращением к портам WRITE_DATA и READ_DATA. Этот же порт используется и для записи последовательности кодов ключа инициализации. Выбор адреса для него обусловлен тем, что ни одна разумно сделанная карта расширения не будет пытаться задействовать для записи адрес регистра состояния стандартного LPT-порта. Порты WRITE_DATA и READ_DATA используются для обмена данными с регистрами PnP. Адрес порта WRITE_DATA традиционными картами с 10-битным декодированием будет восприниматься как тот же адрес, что и у предыдущего порта, так что конфликт опять-таки исключен. Перемещаемому адресу порта READ_DATA программное обеспечение PnP во время исполнения протокола изоляции может легко найти бесконфликтное положение. Адрес этого порта сообщается всем картам записью в их управляющий регистр PnP. Вышеперечисленные три порта используются только для конфигурирования и управления картами PnP. Для взаимодействия прикладных программ с функциональными устройствами карты используются иные ресурсы, выделенные карте (порты, области памяти, прерывания и каналы DMA). По включению питания или аппаратному сбросу карты настраиваются на стандартную рабочую конфигурацию, принятую для них по умолчанию (она может храниться в энергонезависимой памяти или задаваться джамперами). Это обязательно, по крайней мере для устройств, участвующих в загрузке, — ввод, вывод (экран) и собственно загрузочное устройство. Остальные устройства могут быть и логически отключенными от шины, до тех пор пока они не будут сконфигурированы программными средствами PnP. Карта PnP должна сообщать обо всех используемых ею ресурсах и, по возможности, предлагать альтернативные конфигурирования. Она обязана подчиняться конфигурационным командам PnP, включая команду деактивации (логического отключения от шины); при невозможности принять указанную конфигурацию карта (или ее логическое устройство) должна отключаться. Строгое выполнение данных требований всеми картами делает возможным работу системы PnP на неприспособленной для этого шине ISA. Непременным условием работоспособности является и уникальность идентификаторов карт (см. ниже). В плане PnP каждая карта может находиться в одном из четырех состояний. ♦ Wait for key (ожидание ключа) — состояние нормального функционирования (или отключения) логических устройств. В это состояние устройство входит при включении питания, по аппаратному сбросу и по завершению его конфигурирования системой PnP. До подачи ключа в этом состоянии конфигурация карты программными обращениями изменена быть не может. ♦ Sleep («спячка») — состояние, в котором карта ожидает пробуждающей команды Wake[CSN], переводящей ее либо в состояние изоляции, либо в состояние конфигурирования. При нулевом параметре CSN в команде все карты с неназначенным номером CSN переводятся в состояние изоляции. При ненулевом параметре CSN в команде карта с совпадающим номером CSN переводится в состояние конфигурирования. ♦ Isolation (изоляция) — карта отвечает только на чтение регистра Serial Isolation для реализации одноименного протокола (см. далее), с помощью которого ей назначается уникальный номер CSN. Остальные команды PnP ей недоступны. ♦ Config (конфигурирование) — состояние, в котором карта отвечает на все об ращения к регистрам PnP, позволяя считывать и изменять ее конфигурацию. В этом состоянии может находиться лишь одна карта. По окончании конфигурирования карту переводят в режим ожидания ключа, защищая ее конфигурацию.
Протокол изоляции
Для изоляции карт друг от друга имеется специальный режим работы, в который логика PnP переводится с помощью ключа инициализации (Initiation key). Ключ представляет собой предопределенную последовательность записей в порт ADDRESS (279h). Аппаратная логика карты, проверяющая ключ, основана на сдвиговом регистре с обратными связями LFSR (Linear Feedback Shift Register), схема которого приведена на рис. 6.5. Во время проверки ключа на вход C1 подается уровень логического нуля, а на вход C2 — стробы записи в порт ADDRESS. Логика, не показанная на рисунке, сравнивает код в сдвиговом регистре с текущей записью и при несовпадении сбрасывает регистр LFSR в исходное состояние (код 6Ah). В это же состояние регистр может быть переведен двумя последовательными записями нулей в порт ADDRESS. Сдвиг в регистре происходит при каждой записи в порт ADDRESS. Если ключ (последовательность из 32 записей требуемых байт) из исходного состояния LFSR будет приложен верно, то после последней записи логика карты перейдет в режим конфигурирования (это еще не состояние config) и подготовится к отработке протокола изоляции. Точная последовательность байт ключа в hex-формате выглядит следующим образом: 6А, B5, DA, ED, F6, FB, 7D, BE, DF, 6F, 37, 1B, 0D, 86, C3, 61, B0, 58, 2С, 16, 8В, 45, A2, D1, E8, 74, 3A, 9D, СЕ, E7, 73, 39
Рис. 6.5. Сдвиговый регистр LFSR карты PnP Протокол изоляции основан на уникальном последовательном идентификаторе (Serial Identifier), хранящемся в памяти каждой карты PnP. Этот идентификатор представляет собой ненулевое 72-битное число, состоящее из двух 32-битных полей и 8-битного контрольного кода, вычисляемого с помощью того же регистра LFSR. Первое 32-битное поле представляет собой идентификатор производителя. Второе поле назначается производителем и уникально для каждого экземпляра всех выпускаемых им карт. Здесь может присутствовать серийный номер, а для адаптера Ethernet это может быть и частью MAC-адреса. Принцип построения последовательного идентификатора гарантирует, что в одной системе не могут встретиться две карты с совпадающими идентификаторами. Однако случалось, что незадачливые производители тиражировали (свои ли?) устройства, копируя всю «начинку», включая и серийные номера. Доступ к идентификатору осуществляется последовательно, начиная с бита 0 нулевого байта идентификатора производителя и заканчивая битом 7 контрольной суммы. Во время передачи идентификатора на вход C1 схемы LFSR поступают текущие биты идентификатора, а на вход C2 подаются стробы чтения регистра Serial Isolation (см. ниже). В тактах передачи контрольной суммы ее биты берутся с выхода сдвигового регистра. Протокол изоляции может быть программно инициирован в любой момент времени посылкой корректного ключа инициализации, переводящего все карты в конфигурационный режим. В этом режиме каждая карта ожидает 72 пары операций чтения порта READ_DATA. Ответ каждой карты на эти операции определяется значением очередного бита ее последовательного идентификатора. Если текущий бит идентификатора карты имеет единичное значение, то ее буфер шины данных в первом чтении пары выводит на шину данных значение 55h. Если текущий бит нулевой, то буфер работает на чтение шины данных и логика карты анализирует ответ других карт — проверяет наличие комбинации «01» в битах D[1:0] (младшие биты числа 55h). В следующем цикле чтения пары карта с единичным битом выводит число AAh, а карта с нулевым текущим битом проверяет наличие комбинации «10». Если карта, просматривающая вывод данных другими картами, обнаружила корректные коды в обоих циклах чтения пары, она в данной итерации изоляции исключается. Если карта в текущей паре управляла шиной или карта читала шину, но не обнаружила корректных активных ответов других карт, она сдвигает идентификатор на один бит и готовится к приему следующей пары циклов чтения. Эта последовательность выполняется для всех 72 бит идентификатора. В конце процесса останется лишь одна карта. Записью в управляющий регистр PnP (индекс 06) ей назначается селективный номер CSN, по которому она будет использоваться в дальнейших операциях. Карта с назначенным номером CSN в следующих итерациях протокола изоляции не участвует (на пары чтений не отвечает). Во время протокола изоляции карты не имеют права удлинять шинные циклы с помощью сигнала IOCHRDY, поскольку это привело бы к неопределенности результатов наблюдения за «соседями». В других режимах этот сигнал может быть использован без особых ограничений. Программа конфигурирования проверяет данные, возвращаемые во время всех пар циклов чтения, и побитно собирает прочитанный идентификатор. Если в паре приняты байты 55h и AAh, то соответствующий бит считается единичным, в других случаях он считается нулевым. При приеме идентификатора программа подсчитывает контрольную сумму и сравнивает ее с принятой. Несовпадение контрольной суммы или отсутствие среди принятых байт 55h и AAh указывает на то, что выбранный адрес порта READ_DATA конфликтует с каким-либо устройством. Тогда программа пробует произвести итерацию, переместив адрес порта READ_DATA в допустимом диапазоне адресов. Если при переборе нескольких возможных адресов не удается считать корректный идентификатор, то принимается решение об отсутствии карт PnP в системе (вообще или с неназначенными номерами CSN). Программа должна обеспечивать задержку 1 мс после подачи ключа перед первой парой чтений и 250 мкс между парами чтений. Это дает карте время для доступа к информации, которая может храниться и в медленных устройствах энергонезависимой памяти. Итак, по завершении протокола изоляции программное обеспечение имеет список идентификаторов обнаруженных карт и присвоенных им селективных номеров, сообщенных и самим картам. Далее общение программы с каждой картой идет по ее селективному номеру CSN, фигурирующему в командах PnP. Нулевой CSN присваивается картам по программному или аппаратному сбросу и используется как широковещательный адрес.
Конфигурирование карт
Конфигурирование карт выполняется обращениями к регистрам PnP. Обращения к регистрам PnP представляют собой операции записи или чтения портов ввода-вывода по адресам WRITE_DATA или READ_DATA соответственно. При этом для указания конкретного регистра PnP используется индекс — номер этого регистра, предварительно записанный в регистр ADDRESS. Каждая карта имеет стандартный набор регистров PnP, причем часть из них относится к карте в целом, а часть — к каждому логическому устройству, входящему в карту. Архитектура PnP поддерживает концепцию многофункциональности, согласно которой каждая карта может включать в себя несколько логических устройств. В любой момент времени в индексном пространстве регистров PnP отображаются стандартные регистры управления картой (см. ниже) и регистры только одного логического устройства (рис. 6.6). Выбор логического устройства, с которым производится общение, осуществляется записью в регистр Logical Device Number, входящий в группу управляющих регистров карты.
Рис. 6.6. Конфигурационные регистры PnP (* — определяется разработчиком) Все логические устройства карт PnP должны обеспечивать, по крайней мере, минимальную функциональность: ♦ регистры ресурсов при чтении должны отражать фактические текущие на стройки; ♦ бит активации при чтении должен отражать реальное состояние активности устройства на шине ISA; ♦ если программа пытается «навязать» карте конфигурацию, не поддерживаемую устройством, это устройство не должно активироваться и, соответственно, при чтении его флаг активации должен быть сброшен. Для адресации к карте и ее логическим устройствам, а также для чтения конфигурационной информации используются стандартные регистры управления картой (табл. 6.8).
Таблица 6.8. Стандартные регистры управления картой PnP
Конфигурирование карты начинается с команды WAKE[CSN] — записи байта CSN в регистр с индексом 3. Эта операция переводит карту с указанным номером CSN в состояние Config (конфигурирование), а остальные карты «засыпают» — переходят в состояние Sleep. Для конфигурируемой карты выполняются операции чтения ее конфигурационной информации (как карты в целом, так и логических устройств) и программирования используемых ресурсов. Программирование каждого логического устройства завершается установкой его бита активации, после чего логическое устройство активизируется на шине ISA (начнет реально использовать назначенные ресурсы). Программирование всей карты завершается переводом ее в состояние Wait for key (ожидание ключа). По окончании конфигурирования все карты PnP должны быть переведены в это состояние, и тогда их случайное реконфигурирование будет блокировано 32-байтным ключом. Доступ к регистрам PnP через ключ возможен в любое время функционирования, однако запись в них должна производиться в полной уверенности о знании последствий. Возможно даже переназначение CSN «на ходу», но это требуется лишь в устройствах, допускающих «горячие» включения-выключения (что не приветствуется на шине ISA), док-станциях (Docking Stations) для подключения портативных компьютеров и системах управления энергопотреблением. Стандартные регистры управления логическим устройством (табл. 6.9) используются для активации карт и проверки отсутствия конфликтов на шине ISA в выбранном диапазоне адресов ввода-вывода. Когда включен режим проверки конфликтов, на чтение по любому адресу установленного диапазона портов ввода-вывода логическое устройство отвечает байтом 55h или AAh в зависимости от состояния бита 0 регистра проверки. Естественно, что в рабочем режиме этот «автоответчик» должен быть отключен.
Таблица 6.9. Стандартные регистры управления логическим устройством PnP
Оперативные данные конфигурирования доступны через регистры логических устройств. Каждое логическое устройство имеет собственные дескрипторы используемых системных ресурсов. ♦ Обычные 24-битные (4) или 32-битные (4) дескрипторы памяти. Для неиспользуемого дескриптора памяти его поля базового адреса и длины должны быть нулевыми. Одна карта не может одновременно задействовать обычные (24-битные) и 32-битные дескрипторы памяти. ♦ Дескрипторы областей портов ввода-вывода (8). Для неиспользуемого дескриптора портов ввода-вывода его поле базового адреса должно быть нулевым. Размер области адресов определяется в блоке данных, считанном из регистра Resource Data. ♦ Дескрипторы запросов прерываний (2). Неиспользуемый селектор запроса прерывания должен быть нулевым (поскольку нулевой номер запроса недопустим — занят системным таймером). Для линии IRQ2/9 шины ISA применяют номер 9. ♦ Дескрипторы каналов прямого доступа к памяти. Неиспользуемый дескриптор канала прямого доступа должен иметь значение 4 (этот канал недоступен, по скольку задействован для каскадирования контроллеров). Назначение регистров дескрипторов и их положение в индексном пространстве PnP раскрывает табл. 6.10.
Таблица 6.10. Регистры дескрипторов системных ресурсов логических устройств PnP
Дескрипторы требуемых ресурсов (данные о возможных конфигурациях логических устройств) могут быть считаны последовательно байт за байтом из регистра Resource Data и использованы для конфигурирования устройств, которое выполняется через регистры, перечисленные в табл. 6.10. Считываться будут данные из карты, находящейся в состоянии config. Если регистр считывается сразу после «победы» карты в протоколе изоляции, считывание начинается с дескриптора версии PnP. Если считывание начинается для карты после ее «пробуждения» командой Wake[CSN], сначала будут считаны 8 байт уникального идентификатора, затем байт контрольного кода, который будет недействительным, поскольку генерируется аппаратно регистром LFSR во время побитного считывания идентификатора. Только после этого начнется считывание дескрипторов ресурсов. Порядок считывания дескрипторов существенен — именно в этом порядке должны программироваться регистры дескрипторов ресурсов карты PnP. Последовательность считывания дескрипторов для каждого логического устройства завершается признаком завершения области дескрипторов. Считав все дескрипторы всех устройств, программа, выполняющая конфигурирование PnP, получает исчерпывающую информацию об устройствах и их потребностях. После этого она пытается найти бесконфликтную конфигурацию для всех устройств, с учетом потребностей установленных устройств, не относящихся к устройствам PnP. В соответствии с принятым планом она конфигурирует все устройства, а те, которым не удается выделить ресурсы, отключает. Данные о принятых настройках передаются «заинтересованному» ПО программным способом.
Шина PCI
PCI (Peripheral Component Interconnect) local bus — шина соединения периферийных компонентов является основной шиной расширения современных компьютеров. Она разрабатывалась в расчете на Pentium, но хорошо сочеталась и с процессорами 486. Сейчас PCI является четко стандартизованной высокопроизводительной и надежной шиной расширения. Первая версия PCI 1.0 появилась в 1992 г. В PCI 2.0 (1993 г.) введена спецификация коннекторов и карт расширения. В версии 2.1 (1995 г.) введена частота 66 МГц. В настоящее время действует спецификация PCI 2.2 (декабрь 1998 г.), которая уточняет и разъясняет некоторые положения предшествующей версии 2.1. Данное описание основано на тексте стандарта «PCI Local Bus Specification. Revision 2.2» от 18.12.1998, опубликованного организацией PCI SIG (Special Interest Group). Поначалу шина PCI вводилась как пристройка (mezzanine bus) к системам с основной шиной ISA, став позже центральной шиной: она соединяется с системной шиной процессора высокопроизводительным мостом («северным»), входящим в состав чипсета системной платы. Остальные шины расширения ввода-вывода (ISA/EISA или MCA), а также локальная ISA-подобная шина X-BUS и интерфейс LPC, к которым подключаются микросхемы системной платы (ROM BIOS, контроллеры прерываний, клавиатуры, DMA, портов СОМ и LPT, НГМД и прочие «мелочи»), подключаются к шине PCI через «южный» мост. В современных системных платах с хабовой архитектурой шину PCI отодвинули на периферию, не ущемляя ее в мощности канала связи с процессором и памятью, но и не нагружая транзитным трафиком устройств других шин. Шина является синхронной — фиксация всех сигналов выполняется по положительному перепаду (фронту) сигнала CLK. Номинальной частотой синхронизации считается 33 МГц, при необходимости частота может быть понижена (на машинах с процессором 486 использовали частоты 20–33 МГц). Во многих случаях частоту успешно разгоняют и до 41,5 МГц (половина типовой частоты системной шины 83 МГц). Начиная с версии 2.1 допускается повышение частоты до 66 МГц при согласии всех устройств на шине. Номинальная разрядность шины данных — 32 бита, спецификация определяет и расширение разрядности до 64 бит. При частоте шины 33 МГц теоретическая пропускная способность достигает 132 Мбайт/с для 32-битной шины и 264 Мбайт/с для 64-битной; при частоте синхронизации 66 МГц — 264 и 528 соответственно. Однако эти пиковые значения достигаются лишь во время передачи пакета, а из-за протокольных накладных расходов реальная средняя суммарная (для всех задатчиков) пропускная способность шины оказывается ниже. С устройствами PCI процессор может взаимодействовать командами обращения к памяти и портам ввода-вывода, адресованным к областям, выделенным каждому такому устройству при конфигурировании. Устройства могут вырабатывать запросы маскируемых и немаскируемых прерываний. Понятия каналов DMA для шины PCI нет, но агент шины может сам выступать в роли задатчика, поддерживая высокопроизводительный обмен с памятью (и не только), не занимая ресурсов центрального процессора. Таким образом, к примеру, может быть реализован обмен в режиме DMA с устройствами AT А, подключенными к контролеру PCI IDE (см. п. 9.2.1). Спецификация PCI требует от устройств способности перемещать все занимаемые ресурсы в пределах доступного пространства адресации. Это позволяет обеспечивать бесконфликтное распределение ресурсов для многих устройств (функций). Для управления устройствами рекомендуется вместо портов ввода-вывода по возможности использовать ячейки памяти. Одно и то же функциональное устройство может быть сконфигурировано по-разному, отображая свои регистры либо на пространство памяти, либо на пространство ввода-вывода. Драйвер может определить текущую настройку, прочитав содержимое регистра базового адреса устройства, — признаком пространства ввода-вывода будет единичное значение бита 0 (см. п. 6.2.12). Драйвер также может определить и номер запроса прерывания, который используется устройством.
Адресация устройств PCI
Для шины PCI принята иерархия понятий адресации: шина, устройство, функция. Эти понятия фигурируют только при обращении к регистрам конфигурационного пространства (см. п. 6.2.12). К этим регистрам обращаются на этапе конфигурирования — переучета обнаруженных устройств, выделения им непересекающихся ресурсов (областей памяти и пространства ввода-вывода) и назначения номеров аппаратных прерываний. При дальнейшей регулярной работе устройства будут отзываться на обращения по назначенным им адресам памяти и ввода-вывода, доведенным до сведения связанных с ними модулей ПО. Эти адреса принимаются с шины AD в начале каждой транзакции. Для доступа к конфигурационному пространству используются отдельные линии IDSEL. Устройством PCI называется микросхема или карта расширения, подключенная к одной из шин PCI и использующая для идентификации выделенную ей линию IDSEL, принадлежащую этой шине. Устройство может быть многофункциональным, то есть состоять из множества (от 1 до 8) так называемых функций. Каждой функции отводится конфигурационное пространство в 256 байт (см. п. 6.2.12). Многофункциональные устройства должны отзываться только на конфигурационные циклы с номерами функций, для которых имеется конфигурационное пространство. При этом функция с номером 0 должна быть обязательно, номера остальных функций назначаются разработчиком устройства произвольно (в диапазоне 1–7). Простые (однофункциональные) устройства, в зависимости от реализации, могут отзываться либо на любой номер функции, либо только на номер функции 0. Шина PCI — набор сигнальных линий (см. п. 6.2.2), непосредственно соединяющих интерфейсные выводы группы устройств (слотов, микросхем на системной плате). В системе может присутствовать несколько шин PCI, соединенных мостами PCI (см. п. 6.2.10). Мосты электрически отделяют интерфейсные сигналы одной шины от другой, соединяя их логически; главный мост соединяет главную шину с ядром системы (процессором и памятью). Каждая шина имеет свой номер шины (PCI bus number). Шины нумеруются последовательно; главная шина имеет нулевой номер. С точки зрения конфигурирования, минимальной адресуемой единицей этой иерархии является функция; ее полный адрес состоит из трех частей: номера шины, номера устройства и номера функции. Короткая форма идентификации вида PCI0:1:2 (например, в сообщениях ОС Unix) означает функцию 2 устройства 1, подключенного к главной (0) шине PCI. В шине PCI принята географическая адресация — номер устройства определяется местом его подключения. Номер устройства (device number или dev) определяется той линией шины AD, к которой подключена линия сигнала IDSEL данного слота: к AD11 — dev0 (мост), AD12 — dev1 … AD31 — dev20. В соседних слотах PCI, как правило, задействуются соседние номера устройств; их нумерация определяется разработчиком системной платы (или пассивной кросс-платы в промышленных компьютерах). Часто для слотов используются убывающие номера устройств, начиная с 20. Группы соседних слотов могут подключаться к разным шинам; на каждой шине PCI нумерация устройств независимая (могут быть и устройства с совпадающими номерами dev, но разными номерами шин). Устройства PCI, интегрированные в системную плату, используют ту же систему адресации. Их номера «запаяны намертво», в то время как адреса карт расширения можно изменять перестановкой их в разные слоты. Одна карта PCI может содержать только одно устройство шины, к которой она подключается, поскольку ей в слоте выделяется только одна линия IDSEL. Если на карте размещают несколько устройств (например, 4-портовая карта Ethernet), то на ней приходится устанавливать мост — тоже устройство PCI, к которому и обращаются по линии IDSEL, выделенной данной карте. Этот мост организует на карте дополнительную шину PCI, к которой можно подключить множество устройств. С точки зрения обращения к пространствам памяти и ввода-вывода, географический адрес (номер шины и устройства) безразличен (не принимая во внимание разницу в производительности, связанную с подключением устройств к разным шинам PCI). Однако номер устройства определяет номер линии запроса прерывания, которой может пользоваться устройство. Подробнее об этом см. в п. 6.2.6, здесь же отметим, что на одной шине устройства с номерами, отличающимися друг от друга на 4, будут использовать одну и ту же линию прерывания. Возможность развести их по разным линиям прерывания может появиться лишь, если они находятся на разных шинах (это зависит от системной платы). Разобраться с нумерацией устройств и полученных ими линий прерываний на конкретной плате можно просто: устанавливать одну карту PCI поочередно в каждый из слотов (отключая питание) и смотреть на сообщения об обнаруженных устройствах PCI, выводимых на дисплей в конце теста POST. В этих сообщениях будут фигурировать и устройства PCI, установленные непосредственно на системной плате (и не отключенные параметрами CMOS Setup). Но чтобы не было иллюзий простоты и прозрачности, отметим, что «особо умные» операционные системы (Windows) не довольствуются полученными назначениями номеров прерывании и изменяют их по своему усмотрению (что никак не может отразиться на разделяемости линий).
Протокол шины PCI
В каждой транзакции (обмене по шине) участвуют два устройства — инициатор (initiator) обмена, он же ведущее (master) устройство, и целевое (target) устройство (ЦУ), оно же ведомое (slave). Шина PCI все транзакции трактует как пакетные: каждая транзакция начинается фазой адреса, за которой может следовать одна или несколько фаз данных. Состав и на<
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-07-14; просмотров: 730; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.223.30 (0.02 с.) |