Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сети Ethernet и Fast EthernetСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Наибольшее распространение среди стандартных сетей получила сеть Ethernet. Впервые она появилась в 1972 году (разработчиком выступила известная фирма Xerox). Сеть оказалась довольно удачной, и вследствие этого ее в 1980 году поддержали такие крупнейшие компании, как DEC и Intel (объединение этих компаний назвали DIX по первым буквам их названий). Их стараниями в 1985 году сеть Ethernet стала международным стандартом, ее приняли крупнейшие международные организации по стандартам: комитет 802 IEEE (Institute of Electrical and Electronic Engineers) и ECMA (European Computer Manufacturers Association). Стандарт получил название IEEE 802.3 (по–английски читается как "eight oh two dot three"). Он определяет множественный доступ к моноканалу типа шина с обнаружением конфликтов и контролем передачи, то есть с уже упоминавшимся методом доступа CSMA/CD. Этому стандарту удовлетворяли и некоторые другие сети, так как уровень его детализации невысок. В результате сети стандарта IEEE 802.3 нередко были несовместимы между собой как по конструктивным, так и по электрическим характеристикам. Однако в последнее время стандарт IEEE 802.3 считается стандартом именно сети Ethernet. Основные характеристики первоначального стандарта IEEE 802.3: · топология – шина; · среда передачи – коаксиальный кабель; · скорость передачи – 10 Мбит/с; · максимальная длина сети – 5 км; · максимальное количество абонентов – до 1024; · длина сегмента сети – до 500 м; · количество абонентов на одном сегменте – до 100; · метод доступа – CSMA/CD; · передача узкополосная, то есть без модуляции (моноканал). Строго говоря, между стандартами IEEE 802.3 и Ethernet существуют незначительные отличия, но о них обычно предпочитают не вспоминать. Сеть Ethernet сейчас наиболее популярна в мире (более 90% рынка), предположительно таковой она и останется в ближайшие годы. Этому в немалой степени способствовало то, что с самого начала характеристики, параметры, протоколы сети были открыты, в результате чего огромное число производителей во всем мире стали выпускать аппаратуру Ethernet, полностью совместимую между собой. В классической сети Ethernet применялся 50–омный коаксиальный кабель двух видов (толстый и тонкий). Однако в последнее время (с начала 90–х годов) наибольшее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары. Определен также стандарт для применения в сети оптоволоконного кабеля. Для учета этих изменений в изначальный стандарт IEEE 802.3 были сделаны соответствующие добавления. В 1995 году появился дополнительный стандарт на более быструю версию Ethernet, работающую на скорости 100 Мбит/с (так называемый Fast Ethernet, стандарт IEEE 802.3u), использующую в качестве среды передачи витую пару или оптоволоконный кабель. В 1997 году появилась и версия на скорость 1000 Мбит/с (Gigabit Ethernet, стандарт IEEE 802.3z).
Помимо стандартной топологии шина все шире применяются топологии типа пассивная звезда и пассивное дерево. При этом предполагается использование репитеров и репитерных концентраторов, соединяющих между собой различные части (сегменты) сети. В результате может сформироваться древовидная структура на сегментах разных типов (Рисунок 7.1). Рисунок 7.1 – Классическая топология сети Ethernet В качестве сегмента (части сети) может выступать классическая шина или единичный абонент. Для шинных сегментов используется коаксиальный кабель, а для лучей пассивной звезды (для присоединения к концентратору одиночных компьютеров) – витая пара и оптоволоконный кабель. Главное требование к полученной в результате топологии – чтобы в ней не было замкнутых путей (петель). Фактически получается, что все абоненты соединены в физическую шину, так как сигнал от каждого из них распространяется сразу во все стороны и не возвращается назад (как в кольце). Максимальная длина кабеля сети в целом (максимальный путь сигнала) теоретически может достигать 6,5 километров, но практически не превышает 3,5 километров. В сети Fast Ethernet не предусмотрена физическая топология шина, используется только пассивная звезда или пассивное дерево. К тому же в Fast Ethernet гораздо более жесткие требования к предельной длине сети. Ведь при увеличении в 10 раз скорости передачи и сохранении формата пакета его минимальная длина становится в десять раз короче. Таким образом в 10 раз уменьшается допустимая величина двойного времени прохождения сигнала по сети (5,12 мкс против 51,2 мкс в Ethernet). Для передачи информации в сети Ethernet применяется стандартный манчестерский код. Доступ к сети Ethernet осуществляется по случайному методу CSMA/CD, обеспечивающему равноправие абонентов. В сети используются пакеты переменной длины со структурой, представленной на рисунке 7.2. (цифры показывают количество байт)
Рисунок 7.2 – Структура пакета сети Ethernet Длина кадра Ethernet (то есть пакета без преамбулы) должна быть не менее 512 битовых интервалов или 51,2 мкс (именно такова предельная величина двойного времени прохождения в сети). Предусмотрена индивидуальная, групповая и широковещательная адресация. В пакет Ethernet входят следующие поля: · Преамбула состоит из 8 байт, первые семь представляют собой код 10101010, а последний байт – код 10101011. В стандарте IEEE 802.3 восьмой байт называется признаком начала кадра (SFD – Start of Frame Delimiter) и образует отдельное поле пакета. · Адреса получателя (приемника) и отправителя (передатчика) включают по 6 байт и строятся по стандарту, описанному в разделе "Адресация пакетов" лекции 4. Эти адресные поля обрабатываются аппаратурой абонентов. · Поле управления (L/T – Length/Type) содержит информацию о длине поля данных. Оно может также определять тип используемого протокола. Принято считать, что если значение этого поля не больше 1500, то оно указывает на длину поля данных. Если же его значение больше 1500, то оно определяет тип кадра. Поле управления обрабатывается программно. · Поле данных должно включать в себя от 46 до 1500 байт данных. Если пакет должен содержать менее 46 байт данных, то поле данных дополняется байтами заполнения. Согласно стандарту IEEE 802.3, в структуре пакета выделяется специальное поле заполнения (pad data – незначащие данные), которое может иметь нулевую длину, когда данных достаточно (больше 46 байт). · Поле контрольной суммы (FCS – Frame Check Sequence) содержит 32–разрядную циклическую контрольную сумму пакета (CRC) и служит для проверки правильности передачи пакета. Таким образом, минимальная длина кадра (пакета без преамбулы) составляет 64 байта (512 бит). Именно эта величина определяет максимально допустимую двойную задержку распространения сигнала по сети в 512 битовых интервалов (51,2 мкс для Ethernet или 5,12 мкс для Fast Ethernet). Стандарт предполагает, что преамбула может уменьшаться при прохождении пакета через различные сетевые устройства, поэтому она не учитывается. Максимальная длина кадра равна 1518 байтам (12144 бита, то есть 1214,4 мкс для Ethernet, 121,44 мкс для Fast Ethernet). Это важно для выбора размера буферной памяти сетевого оборудования и для оценки общей загруженности сети. Выбор формата преамбулы не случаен. Дело в том, что последовательность чередующихся единиц и нулей (101010...10) в манчестерском коде характеризуется тем, что имеет переходы только в середине битовых интервалов (см. раздел 2.6.3), то есть только информационные переходы. Безусловно, приемнику просто настроиться (синхронизоваться) при такой последовательности, даже если она по какой–то причине укорачивается на несколько бит. Последние два единичные бита преамбулы (11) существенно отличаются от последовательности 101010...10 (появляются переходы еще и на границе битовых интервалов). Поэтому уже настроившийся приемник легко может выделить их и детектировать тем самым начало полезной информации (начало кадра). Для сети Ethernet, работающей на скорости 10 Мбит/с, стандарт определяет четыре основных типа сегментов сети, ориентированных на различные среды передачи информации: · 10BASE5 (толстый коаксиальный кабель);
· 10BASE2 (тонкий коаксиальный кабель); · 10BASE–T (витая пара); · 10BASE–FL (оптоволоконный кабель). Наименование сегмента включает в себя три элемента: цифра "10" означает скорость передачи 10 Мбит/с, слово BASE – передачу в основной полосе частот (то есть без модуляции высокочастотного сигнала), а последний элемент – допустимую длину сегмента: "5" – 500 метров, "2" – 200 метров (точнее, 185 метров) или тип линии связи: "Т" – витая пара (от английского "twisted–pair"), "F" – оптоволоконный кабель (от английского "fiber optic"). Точно так же для сети Ethernet, работающей на скорости 100 Мбит/с (Fast Ethernet) стандарт определяет три типа сегментов, отличающихся типами среды передачи: · 100BASE–T4 (счетверенная витая пара); · 100BASE–TX (сдвоенная витая пара); · 100BASE–FX (оптоволоконный кабель). Здесь цифра "100" означает скорость передачи 100 Мбит/с, буква "Т" – витую пару, буква "F" – оптоволоконный кабель. Типы 100BASE–TX и 100BASE–FX иногда объединяют под именем 100BASE–X, а 100BASE–T4 и 100BASE–TX – под именем 100BASE–T. Подробнее особенности аппаратуры Ethernet, а также алгоритма управления обменом CSMA/CD и алгоритма вычисления циклической контрольной суммы (CRC) будут рассмотрены далее в специальных разделах курса. Здесь следует отметить только то, что сеть Ethernet не отличается ни рекордными характеристиками, ни оптимальными алгоритмами, она уступает по ряду параметров другим стандартным сетям. Но благодаря мощной поддержке, высочайшему уровню стандартизации, огромным объемам выпуска технических средств, Ethernet выгодно выделяется среди других стандартных сетей, и поэтому любую другую сетевую технологию принято сравнивать именно с Ethernet. Развитие технологии Ethernet идет по пути все большего отхода от первоначального стандарта. Применение новых сред передачи и коммутаторов позволяет существенно увеличить размер сети. Отказ от манчестерского кода (в сети Fast Ethernet и Gigabit Ethernet) обеспечивает увеличение скорости передачи данных и снижение требований к кабелю. Отказ от метода управления CSMA/CD (при полнодуплексном режиме обмена) дает возможность резко повысить эффективность работы и снять ограничения с длины сети. Тем не менее, все новые разновидности сети также называются сетью Ethernet. Сеть Token–Ring Сеть Token–Ring (маркерное кольцо) была предложена компанией IBM в 1985 году (первый вариант появился в 1980 году). Она предназначалась для объединения в сеть всех типов компьютеров, выпускаемых IBM. Уже тот факт, что ее поддерживает компания IBM, крупнейший производитель компьютерной техники, говорит о том, что ей необходимо уделить особое внимание. Но не менее важно и то, что Token–Ring является в настоящее время международным стандартом IEEE 802.5 (хотя между Token–Ring и IEEE 802.5 есть незначительные отличия). Это ставит данную сеть на один уровень по статусу с Ethernet.
Разрабатывалась Token–Ring как надежная альтернатива Ethernet. И хотя сейчас Ethernet вытесняет все остальные сети, Token–Ring нельзя считать безнадежно устаревшей. Более 10 миллионов компьютеров по всему миру объединены этой сетью. Компания IBM сделала все для максимально широкого распространения своей сети: была выпущена подробная документация вплоть до принципиальных схем адаптеров. В результате многие компании, например, 3СOM, Novell, Western Digital, Proteon и другие приступили к производству адаптеров. Кстати, специально для этой сети, а также для другой сети IBM PC Network была разработана концепция NetBIOS. Если в созданной ранее сети PC Network программы NetBIOS хранились во встроенной в адаптер постоянной памяти, то в сети Token–Ring уже применялась эмулирующая NetBIOS программа. Это позволило более гибко реагировать на особенности аппаратуры и поддерживать совместимость с программами более высокого уровня. Сеть Token–Ring имеет топологию кольцо, хотя внешне она больше напоминает звезду. Это связано с тем, что отдельные абоненты (компьютеры) присоединяются к сети не напрямую, а через специальные концентраторы или многостанционные устройства доступа (MSAU или MAU – Multistation Access Unit). Физически сеть образует звездно–кольцевую топологию (Рисунок 7.3). В действительности же абоненты объединяются все–таки в кольцо, то есть каждый из них передает информацию одному соседнему абоненту, а принимает информацию от другого. Рисунок 7.3 – Звездно–кольцевая топология сети Token–Ring Концентратор (MAU) при этом позволяет централизовать задание конфигурации, отключение неисправных абонентов, контроль работы сети и т.д. (Рисунок 7.4). Никакой обработки информации он не производит. Рисунок 7.4 – Соединение абонентов сети Token–Ring в кольцо с помощью концентратора (MAU) Для каждого абонента в составе концентратора применяется специальный блок подключения к магистрали (TCU – Trunk Coupling Unit), который обеспечивает автоматическое включение абонента в кольцо, если он подключен к концентратору и исправен. Если абонент отключается от концентратора или же он неисправен, то блок TCU автоматически восстанавливает целостность кольца без участия данного абонента. Срабатывает TCU по сигналу постоянного тока (так называемый "фантомный" ток), который приходит от абонента, желающего включиться в кольцо. Абонент может также отключиться от кольца и провести процедуру самотестирования (крайний правый абонент на рисунке 7.4). "Фантомный" ток никак не влияет на информационный сигнал, так как сигнал в кольце не имеет постоянной составляющей. Конструктивно концентратор представляет собой автономный блок с десятью разъемами на передней панели (Рисунок 7.5). Рисунок 7.5 – Концентратор Token–Ring (8228 MAU) Восемь центральных разъемов (1...8) предназначены для подключения абонентов (компьютеров) с помощью адаптерных (Adapter cable) или радиальных кабелей. Два крайних разъема: входной RI (Ring In) и выходной RO (Ring Out) служат для подключения к другим концентраторам с помощью специальных магистральных кабелей (Path cable). Предлагаются настенный и настольный варианты концентратора.
Существуют как пассивные, так и активные концентраторы MAU. Активный концентратор восстанавливает сигнал, приходящий от абонента (то есть работает, как концентратор Ethernet). Пассивный концентратор не выполняет восстановление сигнала, только перекоммутирует линии связи. Концентратор в сети может быть единственным (как на рисунке 7.4), в этом случае в кольцо замыкаются только абоненты, подключенные к нему. Внешне такая топология выглядит, как звезда. Если же нужно подключить к сети более восьми абонентов, то несколько концентраторов соединяются магистральными кабелями и образуют звездно–кольцевую топологию. Как уже отмечалось, кольцевая топология очень чувствительна к обрывам кабеля кольца. Для повышения живучести сети, в Token–Ring предусмотрен режим так называемого сворачивания кольца, что позволяет обойти место обрыва. В нормальном режиме концентраторы соединены в кольцо двумя параллельными кабелями, но передача информации производится при этом только по одному из них (Рисунок 7.6). Рисунок 7.6 – Объединение концентраторов MAU в нормальном режиме В случае одиночного повреждения (обрыва) кабеля сеть осуществляет передачу по обоим кабелям, обходя тем самым поврежденный участок. При этом даже сохраняется порядок обхода абонентов, подключенных к концентраторам (Рисунок 7.7). Правда, увеличивается суммарная длина кольца. В случае множественных повреждений кабеля сеть распадается на несколько частей (сегментов), не связанных между собой, но сохраняющих полную работоспособность (Рисунок 7.8). Максимальная часть сети остается при этом связанной, как и прежде. Конечно, это уже не спасает сеть в целом, но позволяет при правильном распределении абонентов по концентраторам сохранять значительную часть функций поврежденной сети. Несколько концентраторов может конструктивно объединяться в группу, кластер (cluster), внутри которого абоненты также соединены в кольцо. Применение кластеров позволяет увеличивать количество абонентов, подключенных к одному центру, например, до 16 (если в кластер входит два концентратора). Рисунок 7.7 – Сворачивание кольца при повреждении кабеля Рисунок 7.8 – Распад кольца при множественных повреждениях кабеля В качестве среды передачи в сети IBM Token–Ring сначала применялась витая пара, как неэкранированная (UTP), так и экранированная (STP), но затем появились варианты аппаратуры для коаксиального кабеля, а также для оптоволоконного кабеля в стандарте FDDI. Основные технические характеристики классического варианта сети Token–Ring: · максимальное количество концентраторов типа IBM 8228 MAU – 12; · максимальное количество абонентов в сети – 96; · максимальная длина кабеля между абонентом и концентратором – 45 метров; · максимальная длина кабеля между концентраторами – 45 метров; · максимальная длина кабеля, соединяющего все концентраторы – 120 метров; · скорость передачи данных – 4 Мбит/с и 16 Мбит/с. Все приведенные характеристики относятся к случаю использования неэкранированной витой пары. Если применяется другая среда передачи, характеристики сети могут отличаться. Например, при использовании экранированной витой пары (STP) количество абонентов может быть увеличено до 260 (вместо 96), длина кабеля – до 100 метров (вместо 45), количество концентраторов – до 33, а полная длина кольца, соединяющего концентраторы – до 200 метров. Оптоволоконный кабель позволяет увеличивать длину кабеля до двух километров. Для передачи информации в Token–Ring применяется бифазный код (точнее, его вариант с обязательным переходом в центре битового интервала). Как и в любой звездообразной топологии, никаких дополнительных мер по электрическому согласованию и внешнему заземлению не требуется. Согласование выполняется аппаратурой сетевых адаптеров и концентраторов. Для присоединения кабелей в Token–Ring используются разъемы RJ–45 (для неэкранированной витой пары), а также MIC и DB9P. Провода в кабеле соединяют одноименные контакты разъемов (то есть используются так называемые "прямые" кабели). Сеть Token–Ring в классическом варианте уступает сети Ethernet как по допустимому размеру, так и по максимальному количеству абонентов. Что касается скорости передачи, то в настоящее время имеются версии Token–Ring на скорость 100 Мбит/с (High Speed Token–Ring, HSTR) и на 1000 Мбит/с (Gigabit Token–Ring). Компании, поддерживающие Token–Ring (среди которых IBM, Olicom, Madge), не намерены отказываться от своей сети, рассматривая ее как достойного конкурента Ethernet. По сравнению с аппаратурой Ethernet аппаратура Token–Ring заметно дороже, так как используется более сложный метод управления обменом, поэтому сеть Token–Ring не получила столь широкого распространения. Однако в отличие от Ethernet сеть Token–Ring значительно лучше держит высокий уровень нагрузки (более 30—40%) и обеспечивает гарантированное время доступа. Это необходимо, например, в сетях производственного назначения, в которых задержка реакции на внешнее событие может привести к серьезным авариям. В сети Token–Ring используется классический маркерный метод доступа, то есть по кольцу постоянно циркулирует маркер, к которому абоненты могут присоединять свои пакеты данных (см. Рисунок 4.15). Отсюда следует такое важное достоинство данной сети, как отсутствие конфликтов, но есть и недостатки, в частности необходимость контроля целостности маркера и зависимость функционирования сети от каждого абонента (в случае неисправности абонент обязательно должен быть исключен из кольца). Предельное время передачи пакета в Token–Ring 10 мс. При максимальном количестве абонентов 260 полный цикл работы кольца составит 260 x 10 мс = 2,6 с. За это время все 260 абонентов смогут передать свои пакеты (если, конечно, им есть чего передавать). За это же время свободный маркер обязательно дойдет до каждого абонента. Этот же интервал является верхним пределом времени доступа Token–Ring. Каждый абонент сети (его сетевой адаптер) должен выполнять следующие функции: · выявление ошибок передачи; · контроль конфигурации сети (восстановление сети при выходе из строя того абонента, который предшествует ему в кольце); · контроль многочисленных временных соотношений, принятых в сети. Большое количество функций, конечно, усложняет и удорожает аппаратуру сетевого адаптера. Для контроля целостности маркера в сети используется один из абонентов (так называемый активный монитор). При этом его аппаратура ничем не отличается от остальных, но его программные средства следят за временными соотношениями в сети и формируют в случае необходимости новый маркер. Активный монитор выполняет следующие функции: · запускает в кольцо маркер в начале работы и при его исчезновении; · регулярно (раз в 7 с) сообщает о своем присутствии специальным управляющим пакетом (AMP – Active Monitor Present); · удаляет из кольца пакет, который не был удален пославшим его абонентом; · следит за допустимым временем передачи пакета. Активный монитор выбирается при инициализации сети, им может быть любой компьютер сети, но, как правило, становится первый включенный в сеть абонент. Абонент, ставший активным монитором, включает в сеть свой буфер (сдвиговый регистр), который гарантирует, что маркер будет умещаться в кольце даже при минимальной длине кольца. Размер этого буфера – 24 бита для скорости 4 Мбит/с и 32 бита для скорости 16 Мбит/с. Каждый абонент постоянно следит за тем, как активный монитор выполняет свои обязанности. Если активный монитор по какой–то причине выходит из строя, то включается специальный механизм, посредством которого все другие абоненты (запасные, резервные мониторы) принимают решение о назначении нового активного монитора. Для этого абонент, обнаруживший аварию активного монитора, передает по кольцу управляющий пакет (пакет запроса маркера) со своим MAC–адресом. Каждый следующий абонент сравнивает MAC–адрес из пакета с собственным. Если его собственный адрес меньше, он передает пакет дальше без изменений. Если же больше, то он устанавливает в пакете свой MAC–адрес. Активным монитором станет тот абонент, у которого значение MAC–адреса больше, чем у остальных (он должен трижды получить обратно пакет со своим MAC–адресом). Признаком выхода из строя активного монитора является невыполнение им одной из перечисленных функций. Маркер сети Token–Ring представляет собой управляющий пакет, содержащий всего три байта (Рисунок 7.9): байт начального разделителя (SD – Start Delimiter), байт управления доступом (AC – Access Control) и байт конечного разделителя (ED – End Delimiter). Все эти три байта входят также в состав информационного пакета, правда, функции их в маркере и в пакете несколько различаются. Начальный и конечный разделители представляют собой не просто последовательность нулей и единиц, а содержат сигналы специального вида. Это было сделано для того, чтобы разделители нельзя было спутать ни с какими другими байтами пакетов. Рисунок 7.9 – Формат маркера сети Token–Ring Начальный разделитель SD содержит четыре нестандартных битовых интервала (Рисунок 7.10). Два из них, обозначающихся J, представляют собой низкий уровень сигнала в течение всего битового интервала. Два других бита, обозначающихся К, представляют собой высокий уровень сигнала в течение всего битового интервала. Понятно, что такие сбои в синхронизации легко выявляются приемником. Биты J и K никогда не могут встречаться среди битов полезной информации. Рисунок 7.10 – Форматы начального (SD) и конечного (ED) разделителей Конечный разделитель ED также содержит в себе четыре бита специального вида (два бита J и два бита K), а также два единичных бита. Но, кроме того, в него входят и два информационных бита, которые имеют смысл только в составе информационного пакета: · Бит I (Intermediate) представляет собой признак промежуточного пакета (1 соответствует первому в цепочке или промежуточному пакету, 0 – последнему в цепочке или единственному пакету). · Бит E (Error) является признаком обнаруженной ошибки (0 соответствует отсутствию ошибок, 1 – их наличию). Байт управления доступом (AC – Access Control) разделен на четыре поля (Рисунок 7.11): поле приоритета (три бита), бит маркера, бит монитора и поле резервирования (три бита). Рисунок 7.11 – Формат байта управления доступом Биты (поле) приоритета позволяют абоненту присваивать приоритет своим пакетам или маркеру (приоритет может быть от 0 до 7, причем 7 соответствует наивысшему приоритету, а 0 – низшему). Абонент может присоединить к маркеру свой пакет только тогда, когда его собственный приоритет (приоритет его пакетов) такой же или выше приоритета маркера. Бит маркера определяет, присоединен ли к маркеру пакет или нет (единица соответствует маркеру без пакета, нуль – маркеру с пакетом). Бит монитора, установленный в единицу, говорит о том, что данный маркер передан активным монитором. Биты (поле) резервирования позволяют абоненту зарезервировать свое право на дальнейший захват сети, то есть занять очередь на обслуживание. Если приоритет абонента (приоритет его пакетов) выше, чем текущее значение поля резервирования, то он может записать туда свой приоритет вместо прежнего. После обхода по кольцу в поле резервирования будет записан наивысший приоритет из всех абонентов. Содержимое поля резервирования аналогично содержимому поля приоритета, но говорит о будущем приоритете. В результате использования полей приоритета и резервирования обеспечивается возможность доступа к сети только абонентам, имеющим пакеты для передачи с наивысшим приоритетом. Менее приоритетные пакеты будут обслуживаться только по исчерпании более приоритетных пакетов. Формат информационного пакета (кадра) Token–Ring представлен на рисунке 7.12. Помимо начального и конечного разделителей, а также байта управления доступом в этот пакет входят также байт управления пакетом, сетевые адреса приемника и передатчика, данные, контрольная сумма и байт состояния пакета. Рисунок 7.12 – Формат пакета (кадра) сети Token–Ring (длина полей дана в байтах) Назначение полей пакета (кадра). · Начальный разделитель (SD) является признаком начала пакета, формат – такой же, как и в маркере. · Байт управления доступом (AC) имеет тот же формат, что и в маркере. · Байт управления пакетом (FC – Frame Control) определяет тип пакета (кадра). · Шестибайтовые MAC–адреса отправителя и получателя пакета имеют стандартный формат, описанный в лекции 3. · Поле данных (Data) включает в себя передаваемые данные (в информационном пакете) или информацию для управления обменом (в управляющем пакете). · Поле контрольной суммы (FCS – Frame Check Sequence) представляет собой 32–разрядную циклическую контрольную сумму пакета (CRC). Конечный разделитель (ED), как и в маркере, указывает на конец пакета. Кроме того, он определяет, является ли данный пакет промежуточным или заключительным в последовательности передаваемых пакетов, а также содержит признак ошибочности пакета (см. рисунок 7.10). · Байт состояния пакета (FS – Frame Status) говорит о том, что происходило с данным пакетом: был ли он увиден приемником (то есть, существует ли приемник с заданным адресом) и скопирован в память приемника. По нему отправитель пакета узнает, дошел ли пакет по назначению и без ошибок или его надо передавать заново. Следует отметить, что больший допустимый размер передаваемых данных в одном пакете по сравнению с сетью Ethernet может стать решающим фактором для увеличения производительности сети. Теоретически для скоростей передачи 16 Мбит/с и 100 Мбит/с длина поля данных может достигать даже 18 Кбайт, что принципиально при передаче больших объемов данных. Но даже при скорости 4 Мбит/с благодаря маркерному методу доступа сеть Token–Ring часто обеспечивает большую фактическую скорость передачи, чем сеть Ethernet (10 Мбит/с). Особенно заметно преимущество Token–Ring при больших нагрузках (свыше 30—40%), так как в этом случае метод CSMA/CD требует много времени на разрешение повторных конфликтов. Абонент, желающий передавать пакет, ждет прихода свободного маркера и захватывает его. Захваченный маркер превращается в обрамление информационного пакета. Затем абонент передает информационный пакет в кольцо и ждет его возвращения. После этого он освобождает маркер и снова посылает его в сеть. Помимо маркера и обычного пакета в сети Token–Ring может передаваться специальный управляющий пакет, служащий для прерывания передачи (Abort). Он может быть послан в любой момент и в любом месте потока данных. Пакет этот состоит из двух однобайтовых полей – начального (SD) и конечного (ED) разделителей описанного формата. Интересно, что в более быстрой версии Token–Ring (16 Мбит/с и выше) применяется так называемый метод раннего формирования маркера (ETR – Early Token Release). Он позволяет избежать непроизводительного использования сети в то время, пока пакет данных не вернется по кольцу к своему отправителю. Метод ETR сводится к тому, что сразу после передачи своего пакета, присоединенного к маркеру, любой абонент выдает в сеть новый свободный маркер. Другие абоненты могут начинать передачу своих пакетов сразу же после окончания пакета предыдущего абонента, не дожидаясь, пока он завершит обход всего кольца сети. В результате в сети может находиться несколько пакетов одновременно, но всегда будет не более одного свободного маркера. Этот конвейер особенно эффективен в сетях большой протяженности, имеющих значительную задержку распространения. При подключении абонента к концентратору он выполняет процедуру автономного самотестирования и тестирования кабеля (в кольцо он пока не включается, так как нет сигнала "фантомного" тока). Абонент посылает сам себе ряд пакетов и проверяет правильность их прохождения (его вход напрямую соединен с его же выходом блоком TCU, как показано на рисунке 7.4). После этого абонент включает себя в кольцо, посылая "фантомный" ток. В момент включения, передаваемый по кольцу пакет может быть испорчен. Далее абонент настраивает синхронизацию и проверяет наличие в сети активного монитора. Если активного монитора нет, абонент начинает состязание за право стать им. Затем абонент проверяет уникальность собственного адреса в кольце и собирает информацию о других абонентах. После чего он становится полноправным участником обмена по сети. В процессе обмена каждый абонент следит за исправностью предыдущего абонента (по кольцу). Если он подозревает отказ предыдущего абонента, он запускает процедуру автоматического восстановления кольца. Специальный управляющий пакет (бакен) говорит предыдущему абоненту о необходимости провести самотестирование и, возможно, отключиться от кольца. В сети Token–Ring предусмотрено также использование мостов и коммутаторов. Они применяются для разделения большого кольца на несколько кольцевых сегментов, имеющих возможность обмена пакетами между собой. Это позволяет снизить нагрузку на каждый сегмент и увеличить долю времени, предоставляемую каждому абоненту. В результате можно сформировать распределенное кольцо, то есть объединение нескольких кольцевых сегментов одним большим магистральным кольцом (Рисунок 7.13) или же звездно–кольцевую структуру с центральным коммутатором, к которому подключены кольцевые сегменты (Рисунок 7.14). Рисунок 7.13 – Объединение сегментов магистральным кольцом с помощью мостов Рисунок 7.14 – Объединение сегментов центральным коммутатором Сеть Arcnet Сеть Arcnet (или ARCnet от английского Attached Resource Computer Net, компьютерная сеть соединенных ресурсов) – это одна из старейших сетей. Она была разработана компанией Datapoint Corporation еще в 1977 году. Международные стандарты на эту сеть отсутствуют, хотя именно она считается родоначальницей метода маркерного доступа. Несмотря на отсутствие стандартов, сеть Arcnet до недавнего времени (в 1980 – 1990 г.г.) пользовалась популярностью, даже серьезно конкурировала с Ethernet. Большое количество компаний (например, Datapoint, Standard Microsystems, Xircom и др.) производили аппаратуру для сети этого типа. Но сейчас производство аппаратуры Arcnet практически прекращено. Среди основных достоинств сети Arcnet по сравнению с Ethernet можно назвать ограниченную величину времени доступа, высокую надежность связи, простоту диагностики, а также сравнительно низкую стоимость адаптеров. К наиболее существенным недостаткам сети относятся низкая скорость передачи информации (2,5 Мбит/с), система адресации и формат пакета. Для передачи информации в сети Arcnet используется довольно редкий код, в котором логической единице соответствует два импульса в течение битового интервала, а логическому нулю – один импульс. Очевидно, что это самосинхронизирующийся код, который требует еще большей пропускной способности кабеля, чем даже манчестерский. В качестве среды передачи в сети используется коаксиальный кабель с волновым сопротивлением 93 Ом, к примеру, марки RG–62A/U. Варианты с витой парой (экранированной и неэкранированной) не получили широкого распространения. Были предложены и варианты на оптоволоконном кабеле, но и они также не спасли Arcnet. В качестве топологии сеть Arcnet использует классическую шину (Arcnet–BUS), а также пассивную звезду (Arcnet–STAR). В звезде применяются концентраторы (хабы). Возможно объединение с помощью концентраторов шинных и звездных сегментов в древовидную топологию (как и в Ethernet). Главное ограничение – в топологии не должно быть замкнутых путей (петель). Еще одно ограничение: количество сегментов, соединенных последовательной цепочкой с помощью концентраторов, не должно превышать трех. Концентраторы бывают двух видов: · Активные концентраторы (восстанавливают форму приходящих сигналов и усиливают их). Количество портов – от 4 до 64. Активные концентраторы могут соединяться между собой (каскадироваться). · Пассивные концентраторы (просто смешивают приходящие сигналы без усиления). Количество портов – 4. Пассивные концентраторы не могут соединяться между собой. Они могут связывать только активные концентраторы и/или сетевые адаптеры. Шинные сегменты могут подключаться только к активным концентраторам. Сетевые адаптеры также бывают двух видов: · Высокоимпедансные (Bus), предназначенные для использования в шинных сегментах: · Низкоимпедансные (Star), предназначенные для использования в пассивной звезде. Низкоимпедансные адаптеры отличаются от высокоимпедансных тем, что они содержат в своем составе согласующие 93–омные терминаторы. При их применении внешнее согласование не требуется. В шинных сегментах низкоимпедансные адаптеры могут использоваться как оконечные для согласования шины. Высокоимпедансные адаптеры требуют применения внешних 93–омных терминаторов. Некоторые сетевые адаптеры имеют возможность переключения из высокоимпедансного состояния в низкоимпедансное, они могут работать и в шине, и в звезде. Таким образом, топология сети Arcnet имеет следующий вид (Рисунок 7.15). Рисунок 7.15 – Топология сети Arcnet типа шина (B – адаптеры для работы в шине, S – адаптеры для работы в звезде) Основные технические характеристики сети Arcnet следующие. · Среда передачи – коаксиальный кабель, витая пара. · Максимальная длина сети – 6 километров. · Максимальная длина кабеля от абонента до пассивного концентратора – 30 метров. · Максимальная длина кабеля от абонента до активного концентратора – 600 метров. · Максимальная длина кабеля между активным и пассивным концентраторами – 30 метров. · Максимальная длина кабеля между активными концентратор
|
|||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 677; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.36.36 (0.016 с.) |