Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Методы модуляции, используемые в высокоскоростных модемахСодержание книги
Поиск на нашем сайте
Известно, что "классические" методы модуляции при прочих равных условиях существенно отличаются между собой по степени устойчивости к помехам. В отношении посылок ограниченных во времени отрезков синусоидальных сигналов, несущих информацию о логических нулях и единицах, возможна простая интерпретация преимущества одних методов модуляции перед другими (см. Рисунок 18.4). s1(t) и s2(t) – сигналы, соответствующие логическому нулю и единице (при бинарной передаче, когда каждая элементарная посылка несет информацию только об одном бите). АМ, ЧМ и ФМ – соответственно амплитудная, частотная и фазовая модуляция. Из графиков на видно, что в наибольшей степени отличаются между собой посылки сигналов при фазовой модуляции, в наименьшей – при амплитудной модуляции. Поэтому по степени устойчивости к помехам "классические" методы модуляции должны быть расставлены в том же порядке: АМЧМФМ В высокоскоростных модемах для дальнейшего улучшения помехоустойчивости (при неизменном отношении сигнал–шум в линии) используются обычно комбинации из "классических" методов модуляции, в частности, различные варианты амплитудно–фазовой модуляции. Для пояснения преимущества таких комбинированных методов модуляции над "классическими" методами могут быть применены так называемые констелляционные (от слова constellation – созвездие) или треллис (от слова trellis – решетка) диаграммы. Используется еще и третий вариант названия – квадратурные диаграммы, напрямую связанный со способом изображения на комплексной плоскости гармонических функций при их разложении на синусоидальную ("мнимую" – Im) и косинусоидальную ("вещественную" – Re) составляющие. Рисунок 18.4 – Качественное сравнение "классических" методов модуляции по степени устойчивости к помехам На рисунке 18.5 показан фрагмент сигнала для простой бинарной дифференциальной фазовой модуляции (DPSK), при использовании которой передаче логической 1 в исходной цифровой последовательности соответствует сдвиг фазы гармонической посылки на 180°, а логическому 0 – отсутствие такого сдвига. В аналитическом виде этот сигнал описывается соотношением и на комплексной плоскости представляется в виде двух точек на окружности. В современных высокоскоростных модемах этот вид модуляции не используется, хотя применялся ранее в модемах со скоростью передачи до 4800 бит/с. Ограничение скорости передачи связано с неэффективным размещением сигналов в пространстве, при котором минимальное расстояние между ними (а значит, и степень устойчивости к помехам) далеко от теоретического предела. Для метода DPSK максимальное число бит, информация о которых может быть "закодирована" в одной посылке гармонического сигнала (на одном бодовом интервале), составляет 3, что означает улучшение скорости передачи по сравнению с бинарным кодированием только в 3 раза и общее число гармонических посылок, различающихся по фазе, равное 23=8. При попытке дальнейшего "дробления" фаз метод модуляции DPSK становится неконкурентноспособным с точки зрения помехоустойчивости в сравнении с более совершенными комбинированными амплитудно–фазовыми методами модуляции. Переход от фазовой к амплитудно–фазовой модуляции позволяет увеличить минимальное достижимое расстояние между гармоническими посылками (в смысле расстояния между точками в евклидовом пространстве) при заданном числе этих посылок, как это показано на рисунке 18.6. На этом рисунке сравниваются два метода модуляции (16–DPSK и 16–QAM), причем минимальное расстояние между посылками d, очевидно, больше для второго метода модуляции. Здесь QAM (Quadrature Amplitude Modulation) – многопозиционная амплитудно–фазовая модуляция, при использовании которой достижимое число бит на один бодовый интервал может быть увеличено до 8. Существует усовершенствованный метод модуляции – TCM (Trellis Coded Modulation), модуляция с решетчатым кодированием или треллис–модуляция. Преимущество метода TCM перед QAM состоит не столько в увеличении числа бит, передаваемых за время посылки (оно может составлять от 1 до 9), сколько в снижении требования к телефонной линии по величине отношения сигнал–шум на 3...6 дБ. Если ограничиться кратким пояснением без привлечения ряда дополнительных и необязательных для широкого круга пользователей терминов, то к одним из основных решений, заложенных в метод модуляции TCM, следует отнести введение избыточного бита, полученного с помощью сверточного кодирования. После этого применяется метод модуляции QAM. Несмотря на то, что введение избыточного бита приводит к увеличению общего числа посылок в два раза, использование при декодировании эффективного алгоритма обработки сигналов на фоне шумов и помех (алгоритма Виттерби) позволяет компенсировать эту избыточность и получить отмеченный выше выигрыш в отношении сигнал–шум. Анализ принятого избыточного бита и учет ранее принятых сигналов дает возможность более уверенно выбрать наиболее вероятную точку в пространстве сигналов. Усложнение алгоритмов обработки сигналов и увеличение общего числа посылок ведет к увеличению требуемой производительности (вычислительной мощности) декодера, однако современный уровень развития цифровых сигнальных процессоров позволяет решить эту задачу. Модемы со скоростью передачи до 33600 бит/с, предназначенные для работы на аналоговых телефонных линиях и отвечающие рекомендациям стандарта V.34, используют метод модуляции TCM. На рисунке 18.7 в качестве примера представлены проекции сигналов на комплексную плоскость для метода модуляции TCM при числе точек, равном 24, 128, 256 и 960 (соответствующие скорости передачи в стандарте V.34 9600, 19200, 24000 и 28800+200 бит/с). В последнем случае за счет временного уплотнения помимо основного канала вводится независимый дополнительный (параллельный) низкоскоростной канал (со скоростью передачи 200 бит/с), который может использоваться для служебных целей. Общий вид проекций сигналов на комплексную плоскость на рисунке 18.7 делает понятными ранее упоминаемые варианты названий квадратурных диаграмм: констелляционные (constellation – созвездие) или треллис (решетчатые). Рисунок 18.5 – Фрагмент сигнала для простой бинарной дифференциальной фазовой модуляции (2 – DPSK) и его отображение на комплексной плоскости Рисунок 18.6 – Сравнение двух методов модуляции (16–DPSK и 16–QAM) по величине минимального расстояния между посылками d Рисунок 18.7 – Проекции сигналов на комплексную плоскость для метода модуляции TCM при числе точек, равном 24, 128, 256 и 960 Стоит сделать замечание относительно двух возможных способов описания скоростей модемов. Скорость в бодах (baudrate) представляет собой физическую частоту смены посылок. Она обычно ограничена полосой пропускания телефонной линии (от 300 до 3400 Гц, то есть 3100 Гц). Частота несущей выбирается близкой к середине полосы пропускания телефонной линии; для стандарта V.34 предусмотрен ряд возможных частот несущей в диапазоне от 1600 до 2000 Гц ("уход" в ту или иную сторону от центра полосы пропускания может несколько улучшить качество связи). Таким образом, бодовый интервал (длительность одной элементарной посылки) может содержать менее одного периода гармонического колебания (в отличие от случая, показанного на рисунке 18.4). Информационная скорость передачи может задаваться либо в бит/с (в англоязычной литературе в bps – bit per second,), либо в числе символов/с=байт/с (в англоязычной литературе в cps –characters per second). Скорость в бит/с всегда больше или равна скорости в бодах, причем отношение этих скоростей совпадает с числом бит, приходящихся на один бодовый интервал в том или ином методе модуляции. Произведение 3100 (стандартная полоса пропускания телефонной линии в Гц) 9 (максимальное число бит, приходящихся на один бодовый интервал в методе модуляции QAM) все еще меньше 33600 Бит/c. Это означает необходимость использования более широкой полосы пропускания (и большей частоты смены посылок), что и является одной из особенностей стандарта V.34 (см. следующий раздел). Скорость в символах/с или байт/с (cps) нельзя получить просто делением на 8 скорости в бит/c, так как она учитывает "непроизводительные" потери (служебные поля в пакетах и интервалы между ними). Путем непосредственных измерений установлено, что при таком пересчете дополнительно должен использоваться множитель, немного превышающий 0,9 и зависящий от длины пакета (чем больше длина пакета, тем меньше "непроизводительные" потери).
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 355; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.78.242 (0.009 с.) |