Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Разветленные цепи. Правило КаргофаСодержание книги
Поиск на нашем сайте
Обобщенный закон Ома (см. (100.3)) позволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут иметь общие участки, каждый из контуров может иметь несколько источников тока и т. д.), довольно сложен. Эта задача решается более просто с помощью двух правил Кирхгофа. * *Г. Кирхгоф (1824—1887) — немецкий физик.
Любая точка разветвления цепи, в которой сходится не менее трех проводников с током, называется узлом. При этом ток, входящий в узел, считается положительным, а ток, выходящий из узла, — отрицательным. Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю: Например, для рис. 148 первое правило Кирхгофа запишется так: Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными. Второе правило Кирхгофа получается из обобщенного закона Ома для разветвленных цепей. Рассмотрим контур, состоящий из трех участков (рис. 149). Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с направлением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать: Складывая почленно эти уравнения, получим (101.1) Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с., встречающихся в этом контуре: (101.2) При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо: 1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определяется при решении задачи: если искомый ток получится положительным, то его направление было выбрано правильно, отрицательным — его истинное направление противоположно выбранному. 2. Выбрать направление обхода контура и строго его придерживаться; произведение IR положительно, если ток на данном участке совпадает с направлением обхода, и, наоборот, э.д.с., действующие по выбранному направлению обхода, считаются положительными, против — отрицательными. 3. Составить столько уравнений, чтобы их число было равно числу искомых величин (в систему уравнений должны входить все сопротивления и э.д.с. рассматриваемой цепи); каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах, иначе получатся уравнения, являющиеся простой комбинацией уже составленных. В качестве примера использования правил Кирхгофа рассмотрим схему (рис. 150) измерительного моста Уитстона. * Сопротивления R 1, R 2, R 3и R 4 образуют его «плечи». Между точками А и В моста включена батарея с э.д.с. и сопротивлением r, между точками С и D включен гальванометр с сопротивлением RG. Для узлов А, В и С, применяя первое правило Кирхгофа, получим (101.3) Для контуров АСВA, ACDA и CBDC, согласно второму правилу Кирхгофа, можно записать: (101.4) * Ч. Уитстон (1802—1875) — английский физик. Если известны все сопротивления и э.д.с., то, решая полученные шесть уравнений, можно найти неизвестные токи. Изменяя известные сопротивления R 2, R 3 и R 4, можно добиться того, чтобы ток через гальванометр был равен нулю (IG = 0). Тогда из (101.3) найдем (101.5) а из (101.4) получим (101.6) Из (101.5) и (101.6) вытекает, что (101.7) Таким образом, в случае равновесного моста (IG = 0) при определении искомого сопротивления R 1 э.д.с. батареи, сопротивления батареи и гальванометра роли не играют. На практике обычно используется реохордный мост Уитстона (рис. 151), где сопротивления R 3и R 4 представляют собой длинную однородную проволоку (реохорд) с большим удельным сопротивлением, так что отношение R 3 /R 4 можно заменить отношением l 3/ l 4. Тогда, используя выражение (101.7), можно записать (101.8) Длины l 3 и l 4 легко измеряются по шкале, a R 2 всегда известно. Поэтому уравнение (101.8) позволяет определить неизвестное сопротивление R 1.
10. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Мощность, выделенная на участке цепи, при последовательнои и параллельном соединении проводников. РАБОТА ПОСТОЯННОГО ТОКА Работа тока - работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась. Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока: По закону сохранения энергии: работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия В системе СИ:
При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам. Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику. По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время. В системе СИ: [Q] = 1 Дж
- отношение работы тока за время t к этому интервалу времени. В системе СИ: Последовательное и параллельное соединение проводников. Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно. При последовательном соединении проводников конец первого проводника соединяется с началом второго и т. д. При этом сила тока I одинакова во всех проводниках, а напряжение U на концах всей цепи равно сумме напряжений на всех последовательно включенных проводниках. Например, для трех последовательно включенных проводников 1, 2, 3 (рис. 150) с электрическими сопротивлениями R 1, R 2 и R 3 получим U = U1+ U2+ U3. (43.4) По закону Ома для участка цепи U1= IR1, U2= IR2, U3= IR3 и U = IR, (43.5) где R — полное сопротивление участка цепи из последовательно включенных проводников. Из выражений (43.4) и (43.5) будем иметь IR = I(R1+ R2+ R3). Таким образом, R = R1+ R2+ R3. (43.6) При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников. . При параллельном соединении проводников 1, 2, 3 (рис. 151) их начала и концы имеют общие точки подключения к источнику тока. При этом напряжение U на всех проводниках одинаково, а сила тока I в неразветвленной цепи равна сумме сил токов во всех параллельно включенных проводниках. Для трех параллельно включенных проводников сопротивлениями R1, R2 и R3 на основании закона Ома для участка цепи запишем , , . (43.7) Обозначив общее сопротивление участка электрической цепи из трех параллельно включенных проводников через R, для силы тока в неразветвленной цепи получим . (43.8) Так как , (43.9) то из выражений (43.7), (43.8) и (43.9) следует, что . (43.10) При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям всех параллельно включенных проводников.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 344; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.254.245 (0.006 с.) |