Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вопрос 35.Обратимые и необратимые процессы. Второе начало термодинамики и его формулировки.Содержание книги
Поиск на нашем сайте
Обратимым называется такой термодинамический процесс который может протекать как в прямом так и в обратном направлении. Система проходит через те же самые промежутки что и в прямом направлении но в обратном порядке, причем без того чтобы в окружающей среде оставались изменения. Всякий процесс неудовлетворяющий этим условиям называется необратимым. Мерой необратимости процесса в замкнутой системе является изменением новой функции состояния - энтропии, существование которой у равновесной системы устанавливает первое положение второго начала о невозможности вечного двигателя второго рода. Однозначность этой функции состояния приводит к тому, что всякий необратимый процесс является неравновесным. если бы энтропия была неоднозначной функцией состояния то, можно было бы осуществить вечный двигатель второго рода. Положение о существовании у всякой термодинамической системы новой однозначной функцией состояния энтропии S, которая при адиабатных равновесных процессах не изменяется и составляет содержание второго начала термодинамики для равновесных процессов. Математически второе начало термодинамики для равновесных процессов записывается уравнением: dQ/T = dS или dQ = TdS. Интегральным уравнением второго начала для равновесных круговых процессов является равенство Клаузиуса: dQ/T = 0. Для неравновесного кругового процесса неравенство Клаузиуса имеет следующий вид: dQ/T < 0. Теперь можно записать основное уравнение термодинамики для простейшей системы находящейся под всесторонним давлением: TdS = dU + pdV. Второе начало термодинамики является обобщением опытных фактов. Оно установило максимально возможные пределы, превращения внутренней энергии в механике, в круговые процессы, утверждая невозможное получение работы за счет тел находящихся в тепловом равновесии, указывая направление протекания самопроизвольных процессов. Постулат Клазиуса: 1) Невозможен термодинамический процесс каким бы способом мы не пытались его осуществить единственным конечным результатом которого была бы передача внутренней энергии от менее нагретого тела к более. Под словами «единственным результатом которого» следует понимать, что процесс происходит самопроизвольно не вызывая изменения в окружающей среде. 2)Невозможна некомпенсированная передача внутренней энергии от менее нагретого тела к более нагретому. Постулат Томсона: 1)Невозможен круговой процесс каким бы способом мы не пытались его осуществить единственным конечным результатом которого было бы превращение внутренней энергии взаимствованной из какого либо тела путем теплообмена в механическую энергию путем совершения работы. Невозможен некомпенсированный переход тепла в работу. Невозможно построить вечный двигатель второго рода – это тепловая машина КПД=1. Формулировки Клазиуса и Томсона можно показать эквивалентными. Вопрос 36.Энтропия. Энтропия и законы термодинамики. примеры вычисления энтропии. -обратимый цикл; - необратимый цикл }=> интегралы Клазиуса и являются математической записью 2 Н т/д. Интегралы Клазиуса не зависят от того каким путем мы переводим систему из одного состояния в другое а выражение δQ/T – является полным дифференциалом некоторой функции S являющийся функцией состояния. Эту функция назвали энтропией. Энтропия, функция состояния S термодинамической системы, изменение которой dS для бесконечно малого обратимого изменения состояния системы равно отношению количества теплоты полученного системой в этом процессе (или отнятого от системы), к абсолютной температуре Т: dS=δQ/T. 1/T – интегральный множитель для δQ. [S]= Дж/К. Поскольку dS= δQ/T, a δQ – алгебраическая величина, то изменения энтропии dS зависит от того какой знак имеет δQ. δQ>0, dS>0 – энтропия возврастает, δQ<0,dS<0-убывает, δQ=0 – адиабатный процесс, то dS =0 – энтропия не изменяется. Энтропия обладает свойством аддитивности: энтропия всей системы состоит из нескольких частей равных сумме энтропийных частей этой системы. Если система изолирована и не получает тепло извне δQ=0, то S2-S1>0 - энтропия изолированной системы в которой протекают необратимые процессы возрастает. Изолированной назыв система окруженная жесткой адиабатной оболочкой (жесткой – не позволяет совершать работу над системой, адиабатной – препятствует охлаждению). Если в изолированной системе протекает только обратимые процессы то , S=const – энтропия изолированной системы в которой протекает обратный процесс остается неизменный. Энтропия изолированной системы при любых процессах протекающих в ней не убывает. Поскольку все реальные процессы являются необратимыми то в изолированной системе они сопровождаются ростом энтропии. Энергия изолированной системы (И.С.) постоянная, то энтропия не может служить показателем того в каком направлении протекает процесс в этой системе. В конечном состоянии в И.С. энтропия всегда не меньше чем начальном. По изменению энтропии мы можем сказать в каком направлении протекает процесс. Энтропия возрастает до определенного значения. Закон возрастания энтропии в И.С.: энтропия И.С. стремится к максимуму. Примеры вычисления энтропии: 1 Н Т/Д: |=> |=> - обобщенная математическая запись 1 Н Т/Д и 2 Н Т/Д – основное уравнение термодинамики. 1. Изменение энтропии идеального газа при переходе из 1-2: - изменение энтропии v-молекул идеального газа при переходе из 1-2. 1) V=const. 2) T=const. 3) p=const 2. Изменение энтропии при плавлении. При p= const – плавление происходит при T=const. . Приведенные примеры вычисления энтропии показывают что по изменению энтропии можно судить о направлении протекающих процессов.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 352; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.233.160 (0.008 с.) |