Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вопрос 38. Уравнение ван-дер-ваальса и сопоставление его с опытом. Критическое состояние. Связь между критическими параметрами. Внутренняя энергия реального газа.Содержание книги
Поиск на нашем сайте
Используя модель голландского ученого Ван-дер-Ваальс предложил уравнение состояния для 1 моля реального газа которое носи его имя. - поправка на силы взаимодействия. b-поправка на собственное размножение молекул. Это уравнение лучше описывает состояние газа чем уравнение Клайперона. . Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса — кривые зависимости р от V m при заданных Т, определяемые уравнением Ван-дер-Ваальса для моля газа. Эти кривые рассматриваются для четырех различных температур; имеют довольно своеобразный характер. При высоких температурах (T > T к) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре T к на изотерме имеется лишь одна точка перегиба К. а = (27· R2 ·Т2к)/(64 ·Pк); b = (27· R ·Тк)/(8 ·Pк). Внутренняя энергия реального газа складывается из кинетической энергии теплового движения его молекул (определяет внутреннюю энергию идеального газа, равную CVT) и потенциальной энергии межмолекулярного взаимодействия. Потенциальная энергия реального газа обусловлена только силами притяжения между молекулами. Наличие сил притяжения приводит к возникновению внутреннего давления на газ p'=a/V 2m. Работа, которая затрачивается для преодоления сил притяжения, действующих между молекулами газа, как известно из механики, идет на увеличение потенциальной энергии системы, т. е. d A=p'dVm=d П, или dП=(a/V2m)dVm, откуда П =-a/Vm (постоянная интегрирования принята равной нулю). Знак минус означает, что молекулярные силы, создающие внутреннее давление р', являются силами притяжения. Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа Um = CVT-a/Vm -растет с повышением температуры и увеличением объема. Если газ расширяется без теплообмена с окружающей средой (адиабатический процесс, т. е. d Q = 0) и не совершает внешней работы (расширение газа в вакуум, т. е. dA=0), то на основании первого начала термодинамики (dQ=(U2-U1 )+dA) получим, что U 1 =U2. Следовательно, при адиабатическом расширении без совершения внешней работы внутренняя энергия газа не изменяется. Равенство формально справедливо как для идеального, так и для реального газов, но физически для обоих случаев совершенно различно. Для идеального газа равенство U 1 =U 2означает равенство температур (Т 1 =Т 2 ), т. е. при адиабатическом расширении идеального газа в вакуум его температура не изменяется. Для реального газа из равенства, учитывая, что для моля газа U 1 =CVT 1 -a/V1, U 2 =CVT 2 -a/V 2. Так как V 2 >V 1, то Т 1 >Т 2, т. е. реальный газ при адиабатическом расширении в вакуум охлаждается. При адиабатическом сжатии реальный газ нагревается.
Вопрос 39. Эффект джоуля томсона. Температура инверсии. Сжатие газов.
Вопрос 40. Колебания и характеризующие их величины. Собственные колебания. Свободными (собственными) колебаниями называются колебания, которые происходят в отсутствии переменных внешних воздействий на колебательную систему и возникают вследствие какого-либо начального отклонения этой системы от состояния устойчивого равновесия; колебания, которые совершаются за счёт первоначально сообщённой энергии при последующем отсутствии внешних воздействий на колебательную систему. Вынужденные колебания – это колебания которые происходят под действием внешней периодически изменяющийся силы. Гармонические колебания – колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса. Уравнение гармонических колебаний колебательной величины s: s=Acos(ω0t+φ) или s=Asin(ω0t+φ), где A – амплитуда колебаний, ω0 – круговая (циклическая) частота, φ – начальная фаза колебаний в момент времени t=0, (ω0t+φ) – фаза колебаний в момент времени t. Период гармонического колебания – промежуток времени T, в течение которого фаза колебания получает приращение 2π, т.е. ω0(t+T)+φ=(ω0t+φ)+2π. T=2π/ω0. Период колебаний - наименьший промежуток времени, по истечении которого система, совершающая колебания, снова возвращается в то же состояние, в котором она находилась в начальный произвольно выбранный момент. T=t/N=1/v=2π/ω. Частота колебаний – число полных колебаний, совершаемых в единицу времени. ν=1/T=N/t= ω/2π. Циклическая частота ω(рад/с) – число колебаний за 2π с. ω= 2πv= 2π/T. Амплитуда колебаний – это максимальное значение колеблющейся величины. Фаза колебаний – это значение колеблющейся величины в произвольный момент времени (ω0t+φ). Проекции скорости и ускорения колебательной точки: . Свободные колебания в замкнутой консервативной системе называются собственными колебаниями(отсутствие силы сопротивления и трения). Наиболее простым случаем является случай, когда возвращаемая сила пропорциональна отклонению от положения равновесия , где к- коэффициент квази.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 568; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.218.234 (0.008 с.) |