Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция: Математическое и компьютерное моделированиеСодержание книги
Поиск на нашем сайте
Рассматриваются основные понятия математического и компьютерного моделирования, вычислительный эксперимент, операции моделирования. Цель лекции: введение в математические и компьютерные системные основы информационных систем и информационного менеджмента. Математическая модель описывается (представляется) математическими структурами, математическим аппаратом (числа, буквы, геометрические образы, отношения, алгебраические структуры и т.д.). У математических моделей есть и дидактические аспекты - развитие модельного и математического стиля мышления, позволяющего вникать в структуру и внутреннюю логику моделируемой системы. Отметим основные операции (процедуры) математического моделирования. 1. Линеаризация. Пусть дана математическая модель М=М(X, Y, A), где X - множество входов, Y - множество выходов, А - множество состояний системы. Схематически можно это изобразить так: X A Y. Если X, Y, A - линейные пространства (множества), а : X A, : A Y - линейные операторы (т.е. любые линейные комбинации ax+by аргументов и преобразуют в соответствующие линейные комбинации a (x)+b i;(y) и a (x)+b (y)), то система (модель) называется линейной. Все другие системы (модели) - нелинейные. Они труднее поддаются исследованию, хотя и более актуальны. Нелинейные модели менее изучены, поэтому их часто линеаризуют - сводят к линейным моделям каким-то образом, какой-то корректной линеаризующей процедурой. Пример. Применим операцию линеаризации к модели (какой физической системы, явления?) у=at2/2, 0 t 4, которая является нелинейной (квадратичной). Для этого заменим один из множителей t на его среднее значение для рассматриваемого промежутка, т.е. на t=2. Такая (пусть простят меня знакомые с линеаризацией читатели, - хоть и очень наглядная, но очень грубая!) процедура линеаризации дает уже линейную модель вида y=2at. Более точную линеаризацию можно провести следующим образом: заменим множитель t не на среднее, а на значение в некоторой точке (это точка - неизвестная!); тогда, как следует из теоремы о среднем из курса высшей математики, такая замена будет достаточно точна, но при этом необходимо оценить значение неизвестной точки. На практике используются достаточно точные и тонкие процедуры линеаризации. 2. Идентификация. Пусть М=М(X, Y, A), A={ai}, ai=(ai1, ai2,..., aik) - вектор состояния объекта (системы). Если вектор ai зависит от некоторых неизвестных параметров, то задача идентификации (модели, параметров модели) состоит в определении по некоторым дополнительным условиям, например, экспериментальным данным, характеризующим состояние, системы в некоторых случаях. Идентификация - задача построения по результатам наблюдений математических моделей некоторого типа, адекватно описывающих поведение системы. Если S={s1, s2,..., sn} - некоторая последовательность сообщений, получаемых от источника информации о системе, М={m1, m2,..., mz} - последовательность моделей, описывающих S, среди которых, возможно, содержится оптимальная (в каком-то смысле) модель, то идентификация модели М означает, что последовательность S позволяет различать (по рассматриваемому критерию адекватности) две разные модели в М. Последовательность сообщений (данных) S назовем информативной, если она позволяет различать разные модели в М. Цель идентификации - построение надежной, адекватной, эффективно функционирующей гибкой модели на основе минимального объема информативной последовательности сообщений. Наиболее часто используемые методы идентификации систем (параметров систем): метод наименьших квадратов, метод максимального правдоподобия, метод байесовских оценок, метод марковских цепных оценок, метод эвристик, экспертное оценивание и другие. Пример. Применим операцию идентификации параметра a в модели предыдущего примера. Для этого необходимо задать дополнительно значение y для некоторого t, например, y=6 при t=3. Тогда из модели получаем: 6=9a/2, a=12/9=4/3. Идентифицированный параметр а определяет следующую модель y=2t2/3. Методы идентификации моделей могут быть несоизмеримо сложнее, чем приведенный прием. 3. Оценка адекватности (точности) модели. Пример. Оценим адекватность (точность) модели у=at2/2, 0 t 4, полученной в результате линеаризации выше. В качестве меры (критерия) адекватности рассмотрим привычную меру - абсолютное значение разности между точным (если оно известно) значением и значением, полученным по модели (почему берется по модулю?). Отклонение точной модели от линеаризованной будет в рамках этого критерия равно |at2/2-2at|, 0 t 4. Если a>0, то, как несложно оценить с помощью производной, эта погрешность будет экстремальна при t=2a. Например, если a=1, то эта величина не превосходит 2. Это достаточно большое отклонение, и можно заключить, что наша линеаризованная модель в данном случае не является адекватной (как исходной системе, так и нелинеаризованной модели). 4. Оценка чувствительности модели (чувствительности к изменениям входных параметров). Пример. Из предыдущего примера следует, что чувствительность модели у=at2/2, 0 t 4 такова, что изменение входного параметра t на 1% приводит к изменению выходного параметра y на более, чем 2%, т.е. эта модель является чувствительной. 5. Вычислительный эксперимент по модели. Это эксперимент, осуществляемый с помощью модели на ЭВМ с целью определения, прогноза тех или иных состояний системы, реакции на те или иные входные сигналы. Прибором эксперимента здесь является компьютер (и модель!). Это процедура часто отождествляется с компьютерным моделированием. Отметим основные причины, несколько тормозящие выход математического моделирования на новые информационные технологии:
В базовой пятерке: "система (исследуемая среда) - модель (описание среды) - алгоритм (программа) - компьютер (компьютерная технология) - пользователь (выработка решения)" при компьютерном моделировании главную роль играют уже алгоритм (программа), компьютер и технология, точнее, инструментальные системы для компьютера, компьютерные технологии. Пример. При имитационном моделировании (при отсутствии строгого и формально записанного алгоритма) главную роль играют технология и средства моделирования; аналогичная ситуация наблюдается в когнитивной графике. Модель не эквивалентна программе, а моделирование не сводится к программированию. Специфические операции математического моделирования, например, идентификация, линеаризация не сводятся в ЭВМ к преобразованию в ней программ. Расширяется и область применения компьютера и компьютерных моделей. Основные функции компьютера при моделировании систем:
Компьютерное моделирование - основа представления знаний в ЭВМ (построения различных баз знаний). Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ. Прогресс моделирования связан с разработкой систем компьютерного моделирования, которые поддерживает весь жизненный цикл модели, а прогресс в информационной технологии - с актуализацией опыта моделирования на компьютере, с созданием банков моделей, методов и программных систем, позволяющих собирать новые модели из моделей банка. Автономные подмодели модели обмениваются информацией друг с другом через единую информационную шину - банк моделей, через базу знаний по компьютерному моделированию. Особенность компьютерных систем моделирования - их высокая интеграция и интерактивность. Часто эти компьютерные среды функционируют в режиме реального времени. Вычислительный эксперимент - разновидность компьютерного моделирования. Можно говорить сейчас и о специальных пакетах прикладных программ, текстовых, графических и табличных процессоров, визуальных и когнитивных средах (особенно, работающих в режиме реального времени), позволяющих осуществлять компьютерное моделирование. Компьютерное моделирование и вычислительный эксперимент становятся новым инструментом, методом научного познания, новой технологией из-за возрастающей необходимости перехода от исследования линейных математических моделей систем (для которых достаточно хорошо известны или разработаны методы исследования, теория) к исследованию сложных и нелинейных математических моделей систем (анализ которых гораздо сложнее); грубо, но образно, говоря: "наши знания об окружающем мире - линейны и детерминированы, а процессы в окружающем мире - нелинейны и стохастичны". Информация (абстракция), реализуясь сообщениями реального мира, овеществляется в разных предметных процессах, а реализация на компьютере вызывает необходимость использования в компьютерах специальных формализованных описаний, представлений этих процессов. Компьютерное моделирование, от постановки задачи до получения результатов, проходит следующие этапы компьютерного моделирования.
Пример. Математическое и компьютерное моделирование подробно, поэтапно, мы рассмотрим на примере следующей простой модели производства. Итак, возьмем укрупненные этапы моделирования производства.
|
||||
Последнее изменение этой страницы: 2016-07-11; просмотров: 403; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.57.57 (0.007 с.) |