Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Этап 4. Проведение вычислительных экспериментовСодержание книги
Поиск на нашем сайте
Эксперимент 1. Поток инвестиций - постоянный и в каждый момент времени равен 10000. В начальный момент капитал - 1000000 руб. Коэффициент амортизации - 0,0025. Найти величину основных фондов через 20 суток, если лаг равен 5 суток. Эксперимент 2. Основные фонды в момент времени t=0 была равны 5000. Через какое время общая их сумма превысит 120000 руб., если поток инвестиций постоянный и равен 200, а m=0,02, T=3? Эксперимент 3. Какую стратегию инвестиций лучше использовать, если величина инвестиций постоянная, в начальный момент капитал равен 100000, величина амортизации постоянная? Этап 5. Модификация (развитие) модели Модификация 1. Коэффициент амортизации можно взять в форме m=r-sx(t), где r - коэфициент обновления фондов, s - коэффициент устаревания фондов, причем 0 r, s 1. При этом модель примет вид x´(t)=y(t-T)-rx(t)+sx2(t), x(0)=х0Этой непрерывной, дифференциальной, динамической модели можно поставить в соответствие простую дискретную модель: хi+1=хi +yj - rхi+sxi 2, x0=с, i=0, 1, 2,:, n, 0<j<n,где n - предельное значение момента времени при моделировании. Поставить цели и исследовать непрерывную и дискретную модели. Модификация 2. Одна из моделей математической экономики задается уравнением: dz/dt=((1-c)*z(t)+k(t-w)+a)l, где z(t) - функция, которая характеризует выпуск продукции, k - коэффициент капиталовложений, a - независимые расходы производства, l - скорость реакции выпуска на капиталовложения, c - постоянная спроса, w - запаздывание (лаг). Поставить цели и исследовать непрерывную и дискретную модели. Модификация 3. Для модели динамики фондов с переменным законом потока инвестиций: а) построить гипотезы, модель и алгоритм для моделирования; б) сформулировать планы вычислительных экспериментов по этой модели; в) реализовать алгоритм и планы экспериментов на ЭВМ. Математическое моделирование только в последнее время становится на технологическую основу, в связи с этим необходимо отметить особую роль обычно технологичного имитационного моделирования, которое позволяет нам проигрывать реальные ситуации, происходящие в системах, на их моделях. Компьютерное моделирование (получение, накопление, переработка, хранение, использование, актуализация знаний с помощью ЭВМ), в отличие от математического, используется сравнительно недавно, хотя эти технологии моделирования тесно связаны. Компьютерное моделирование, как правило, применяется тогда, когда не удается построить математической аналитической модели или же такая модель трудоемка для исследования. Пример. Компьютерной (физической) моделью может служить простая модель броуновского движения, получаемая генерацией компьютером нового случайного положения точки на экране и траектории ее движения; при этом отметим, что сам "датчик случайных чисел компьютера (или языка)" - это компьютерная модель, соответствующая математической модели распределения случайной величины (обычно нормального распределения) или так называемой функции распределения. Это распределение - псевдослучайное, получаемое по вполне детерминированному алгоритму. Вопросы для самоконтроля
Задачи и упражнения По приведенным ниже моделям: выписать соответствующую дискретную модель (если приведена непрерывная модель) или непрерывную модель (если приведена дискретная модель); исследовать модель в соответствии с поставленной целью (получить решение, проверить его единственность, устойчивость, наличие стационарного решения); составить алгоритм моделирования; модифицировать модель или разработать на ее основе новую; сформулировать несколько реальных систем, описываемых моделью; линеаризовать и идентифицировать модель (предложить подходы); сформулировать несколько возможных сфер применения моделей и результатов, полученных при ее исследовании; определить тип, входное и выходное множество модели.
|
||||
Последнее изменение этой страницы: 2016-07-11; просмотров: 237; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.161.6 (0.006 с.) |