VI. ВЕЛИКИЕ СТОХАСТИЧЕСКИЕ ПРОЦЕССЫ



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

VI. ВЕЛИКИЕ СТОХАСТИЧЕСКИЕ ПРОЦЕССЫ



Более точно и иногда столь же удобно выражение «выживание наиболее приспособленного», часто используемое г-ном Гербертом Спенсером.

Чарльз Дарвин, «Происхождение видов», пятое издание

Как вода, невольно втекающая в эту вселенную,

Не зная, почему, и не зная откуда;

И как ветер, невольно несущийся, не знаю куда,

Через пустоту из этой вселенной.

Омар Хайям, «Рубайят»

Общее предположение этой книги состоит в том, что и генетическая изменчивость, и процесс, называемый обучением (в том числе соматические изменения, порождаемые привычкой и средой), суть стохастические процессы*. Как я полагаю, в каждом случае есть поток событий, случайный в некоторых аспектах, и в каждом случае есть неслучайный процесс отбора случайных компонент, которым вследствие этого предстоит «пережить» остальные. Без случайности не может быть ничего нового.

Я предполагаю, что в эволюции возникновение мутантных форм либо случайно, в пределах каких угодно альтернатив, допускаемых status quo ante,¦ либо, если мутация запрашивается, то критерии этого запроса несущественны для напряжений, переживаемых организмом. В соответствии с ортодоксальной теорией молекулярной генетики я предполагаю, что окружающая ДНК протоплазменная среда не может прямо направлять изменения ДНК, существенные для приспособления организма к среде или для снижения внутреннего напряжения. На частоту мутаций может влиять ряд факторов – и физических, и химических – но я предполагаю, что возникающие таким образом мутации не направляются теми частными напряжениями, которые переживало во время мутации родительское поколение. Я предположу даже, что мутации, вызванные мутагеном, несущественны для физиологического напряжения, порожденного в клетке самим мутагеном.

Сверх того, я предположу, как это уже стало ортодоксальным, что мутации, возникающие столь случайно, накапливаются в совокупном генофонде популяции, и что естественный отбор работает над устранением альтернатив, неблагоприятных с точки зрения чего-то вроде выживания, причем это устранение в целом благоприятствует безвредным или полезным альтернативам.

Подобным образом, я предполагаю, что с другой стороны – со стороны индивида – психические процессы порождают множество альтернатив, и что отбор из числа этих альтернатив определяется чем-то вроде подкрепления.

И для мутаций, и для обучения всегда надо иметь в виду потенциальные патологии, связанные с логическим типом. Чтó представляет ценность для индивидуального выживания, то может быть смертельно для популяции или общества. Чтó хорошо на краткое время (симптоматическое лечение), то может при длительном применении превратиться во вредную зависимость или в смертельную опасность.

Альфред Уоллес заметил в 1866 году, что принцип естественного отбора подобен паровой машине с регулятором. Я предположу, что это в самом деле верно, и что процессам индивидуального обучения и развития популяции под действием естественного отбора равным образом свойственны патологии всех кибернетических систем: избыточное колебание и ход вразнос.

В общем, я предположу, что эволюционная изменчивость, и соматическая изменчивость (в том числе обучение и мышление) в основном подобны друг другу, что оба этих процесса стохастичны по своей природе, хотя, конечно, принципы действия (приказания, описательные предложения и т.п.) имеют в них весьма различные логические типы.

Именно смешение логических типов привело ко всей путанице, спорам и даже нелепостям в таких вопросах, как «наследование приобретенных признаков» и законность привлечения «разума» в качестве принципа объяснения.

Все это имеет любопытную историю. В свое время многим трудно было перенести, что эволюция имеет случайную компоненту. Как полагали, это противоречило всему известному о приспособлении и целенаправленности, а также любой вере в создателя с определенными психическими (mental) свойствами. Критика «Происхождения видов» у Сэмюэля Батлера состояла, по существу, в том, что он обвинял Дарвина в исключении разума из числа объяснительных принципов его системы. Батлер хотел бы представить себе, что где-то в системе работает неслучайный разум, а потому предпочитал теориям Дарвина теории Ламарка.[40]

Оказалось, однако, что такая критика была полностью ошибочна в своем выборе поправок к теории Дарвина. В наши дни мы рассматриваем мышление и обучение (а может быть и соматическую изменчивость) как стохастические процессы. Мы поправили бы мыслителей девятнадцатого века не прибавлением нестохастического разума к процессу эволюции, а предположением, что мышление и эволюция равным образом несут в себе стохастическую составляющую. Оба они – разумные процессы (mental processes) в смысле критериев, приведенных в Главе 4.

Таким образом, перед нами две великих стохастических системы, отчасти взаимодействующих, и отчасти изолированных друг от друга. Одна из этих систем находится внутри индивида и называется обучением; другая заложена в наследственности и в популяциях и называется эволюцией. Одна относится к периоду жизни отдельного существа, другая же охватывает ряд поколений и множество индивидов.

Задача этой главы – показать, как эти две стохастические системы, действуя на разных уровнях логических типов, соединяются в единую долгоживущую биосферу, которая не могла бы существовать, если бы соматическая и генетическая изменчивость были принципиально иными, чем они есть.

Единство совместной системы необходимо.

Заблуждения ламарка

Очень значительная часть того, что можно сказать о переплетении эволюции и соматической изменчивости имеет дедуктивный характер. На уровне теории, которой мы здесь занимаемся, нет наблюдательных данных, и экспериментирование еще не началось. Но это неудивительно. В конце концов, естественный отбор не имел почти никаких подтверждений в полевых наблюдениях до тех пор, пока Кетлуэлл (Kettletwell) не изучил в 1930-х годах бледную и темную разновидности пяденицы березовой (Biston betularia).

Во всяком случае, аргументы против гипотезы о наследуемости приобретенных признаков поучительны и послужат для иллюстрации нескольких аспектов запутанных отношений между двумя великими стохастическими процессами. Есть три таких аргумента, из которых убедителен только третий:

а. Первый аргумент состоит в том, что эту гипотезу следует отвергнуть за недостатком эмпирических подтверждений. Но экспериментирование в этой области невероятно трудно, а критика беспощадна, так что отсутствие свидетельств не вызывает удивления. Если бы наследование в смысле Ламарка произошло в полевых условиях, или даже в лаборатории, неясно, возможно ли было бы его распознать.

б. Второй критикой, до недавнего времени наиболее неоспоримой, было высказанное Августом Вейсманом (August Weissmann) в 1890-х годах утверждение, что не существует связи между сомой и зародышевой плазмой.* Вейсман был необычайно одаренный немецкий эмбриолог, который еще в молодости почти ослеп и посвятил себя теории. Он заметил, что многим организмам свойственна непрерывность того, что он назвал «зародышевой плазмой», то есть протоплазменной линии, переходящей из поколения в поколение, и что в каждом поколении фенотипическое тело или сома может рассматриваться как ответвление от зародышевой плазмы. Исходя из этого интуитивного прозрения, он доказывал, что не может быть обратной связи от соматической ветви к главному стволу – зародышевой плазме.

Упражнение правого бицепса несомненно усилит у индивида этот мускул, не нет никакого известного пути, по которому сообщение об этом соматическом изменении могло бы быть передано половым клеткам этого индивида. Эта критика, подобно первой, зависит от того же аргумента – от факта отсутствия свидетельств. Это ненадежная почва для заключений, и большинство биологов после Вейсмана стремилось превратить этот довод в дедуктивный, предполагая, что нет никакого мыслимого пути сообщения между бицепсом и будущей гаметой.

Но в наши дни это предположение не выглядит столь надежным, как двадцать лет назад. Если РНК может переносить отпечатки сегментов ДНК в другие части клетки, а возможно и в другие части тела, то можно себе представить, что отпечатки химических изменений в бицепсе могут быть перенесены в зародышевую плазму.

в. Заключительная и, на мой взгляд, единственно убедительная критика – это reductio ad absurdum*, утверждение, что если бы наследование в смысле Ламарка было правилом, или даже обычным явлением, то вся система переплетенных стохастических процессов перестала бы действовать.

Я предлагаю здесь эту критику не только в виде попытки (может быть, напрасной) прикончить эту все еще не совсем мертвую химеру, но также для иллюстрации отношений между двумя стохастическими процессами. Представьте себе следующий диалог:

БИОЛОГ: Что же в точности утверждает теория Ламарка? Что вы называете «наследованием приобретенных признаков»?

ЛАМАРКИСТ: Это значит, что изменения в теле, произведенные окружающей средой, передаются потомку.

БИОЛОГ: Погодите немного, передаваться должно «изменение»? Но что же именно передается от родителя к потомку? Ведь «изменение», как я полагаю – это некоторая абстракция.

ЛАМАРКИСТ: Это эффект среды, например, брачные подушечки на лапах самца жабы-повитухи.[41]

БИОЛОГ: Я все еще не понимаю. Вы, конечно, не хотите сказать, что среда произвела брачные подушечки.

ЛАМАРКИСТ: Разумеется, нет. Их произвела жаба.

БИОЛОГ: Ах, вот как, значит, жаба в некотором смысле это знала, или имела «потенцию» отрастить себе брачные подушечки?

ЛАМАРКИСТ: Да, что-то в этом роде. Жаба могла произвести брачные подушечки, когда ее вынудили размножаться в воде.

БИОЛОГ: Вот как, значит, она может приспосабливаться. Правильно ли я Вас понимаю? Если она размножается на суше, как это нормально для ее вида жаб, то она не производит брачных подушечек. Но оказавшись в воде, она производит подушечки, подобно всем другим видам жаб. У нее есть выбор.

ЛАМАРКИСТ: Но некоторые из потомков жаб, произведших подушечки в воде, производили их даже на суше. Это я и называю наследованием приобретенных признаков.

БИОЛОГ: О, да, я понимаю. То, что было унаследовано – это была потеря выбора. Потомки больше не могли нормально размножаться на суше. И это поразительно.

ЛАМАРКИСТ: Вы намеренно отказываетесь понимать.

БИОЛОГ: Может быть. Но я все еще не понимаю, что же, как предполагается, «передалось» или «унаследовалось». Предлагаемый опытный факт состоит в том, что потомки отличались от родителя отсутствием выбора, который был у родителя. Но это означает не передачу некоторого сходства, как подсказывало бы слово наследственность. То, что передается – это различие. Но «различие» не было в наличии, чтобы его можно было передать. Насколько я понимаю, жаба-родитель имела свой выбор в полном распоряжении.

И так далее.

Подлинное содержание спора – это логический тип генетического сообщения, которое, как предполагается, передается. Недостаточно сказать в неясной форме, что передаются брачные подушечки, и не имеет смысла заявлять, что передается потенция развития брачных подушечек, поскольку эта потенция была свойственна жабе-родителю еще до начала эксперимента[42].

Конечно, нельзя отрицать, что животные, и в меньшей степени растения нашего мира часто представляют видимость того, что можно было бы найти в мире с эволюцией, следующей путем ламарковой наследственности.

Как мы увидим, такая видимость неизбежна, поскольку (а) дикие популяции обычно (может быть, всегда) имеют неоднородный (смешанный и разнообразный) генофонд, (б) индивидуальные животные способны к соматическим изменениям, которые в определенном смысле адаптивны, и (в) мутации и перегруппировки существующих генов случайны.

Но мы придем к этому заключению лишь после того как сравним энтропийную экономику соматического изменения с энтропийной экономикой достижения той же фенотипической формы путем генетического определения.

В нашем воображаемом диалоге ламаркиста заставил умолкнуть тот довод, что наследование приобретенных способностей сопровождалось бы потерей свободы модифицировать индивидуальное тело в ответ на требования привычки или среды. Но это обобщение не так уж просто. Несомненно, замена соматического контроля генетическим (независимо от проблемы наследственности) всегда уменьшает гибкость индивида. При этом в данном частном признаке частично или полностью теряется выбор соматического изменения. Но все еще остается общий вопрос: Верно ли, что замена соматического контроля генетическим не окупается никогда? Если бы дело обстояло таким образом, то мир был бы несомненно непохож на тот, в котором мы живем. Точно так же, если бы была правилом ламаркова наследственность, то весь процесс эволюции и жизни был бы скован жесткостью генетической детерминированности. Ответ должен находиться где-то между этими крайностями, и за недостатком данных для разъяснения этой загадки мы вынуждены прибегнуть к здравому смыслу и к принципам кибернетики.

Я хочу проиллюстрировать все это обсуждением упражнения и неупражнения.

Упражнение и неупражнение

Эта старая пара понятий, занимавшая обычно центральное место в дискуссиях об эволюции, почти исчезла из рассуждений, может быть, потому, что в этой связи особенно необходимо не упускать из виду логические уровни различных компонент любой гипотезы. Нет ничего особенно загадочного в том, что результаты упражнения могут некоторым образом содействовать эволюции. Никто не станет отрицать, что на первый взгляд биологическая картина выглядит так, как будто последствия упражнения и неупражнения передаются от поколения к поколению. Однако, это невозможно совместить с тем, что мы знаем о самокорректирующей и адаптивной природе соматического изменения. Живые существа потеряли бы в течение немногих поколений всякую свободу соматического приспособления.

Но если выйти за пределы грубо-ламаркистской позиции, то перед нами возникают трудности, связанные с логическими уровнями частей гипотезы. Я думаю, что эти трудности разрешимы. Насколько дело касается упражнения, не так уж трудно представить себе последовательности, в которых естественный отбор мог бы предпочитать индивиды, генетическое строение которых соответствовало бы соматическим изменениям, обычным у индивидов данной популяции. Соматические изменения, сопровождающие упражнение, обычно (хотя и не всегда) адаптивны, а потому генетический контроль, предпочитающий такие изменения, мог бы иметь преимущества.

При каких же обстоятельствах окупается – в смысле выживания – замена соматического контроля генетическим?

Как я уже говорил, ценой такого перехода является недостаток гибкости, но если мы хотим определить, в каких условиях этот переход будет благоприятным, то следует точнее объяснить, в чем может состоять этот недостаток.

На первый взгляд, имеются такие случаи, когда после перехода к генетическому контролю гибкость, может быть, вовсе и не потребуется. Это случаи, когда соматическое изменение есть приспособление к некоторому постоянному условию среды. Те особи вида, которые поселились в высоких горах, во всем своем приспособлении к горному климату, атмосферному давлению и так далее, могут положиться на генетическое определение. Они не нуждаются в той обратимости, которая характерна для соматического изменения.

Обратно, приспособление к изменчивым и обратимым условиям гораздо лучше достигается с помощью соматического изменения, и вполне возможно, что допустимо лишь очень поверхностное соматическое изменение.

Соматические изменения различаются степенью глубины. Если человек поднимается в горах с уровня моря до 12000 футов*, то – если только он не находится в очень хорошем физическом состоянии – у него начинается одышка и сердцебиение. Эти немедленные и обратимые соматические изменения адекватны, чтобы справиться с чрезвычайным случаем, но было бы расточительным использованием гибкости применять одышку и тахикардию в качестве постоянного приспособления к горной атмосфере. В этом случае требуется, возможно, не столь обратимое соматическое изменение, поскольку теперь идет речь не о чрезвычайном случае, а о постоянных, долговременных условиях. Здесь может окупиться некоторая потеря обратимости ради экономии гибкости (т.е. одышку и тахикардию можно приберечь для такого случая, когда высоко в горах потребуется добавочное усилие).

То, что происходит в таких случаях, называется акклиматизацией. В сердце человека происходят изменения, в крови его возрастает содержание гемоглобина, расширяется его грудная клетка и меняется способ дыхания, и т.д. Эти изменения гораздо менее обратимы, чем одышка, и если этот человек

 

 


спускается на какое-то время с гор, у него может возникнуть некоторое ощущение неудобства.

На языке этой книги можно сказать, что есть иерархия соматических приспособлений, касающихся частных и непосредственных требований на поверхностном (самом конкретном) уровне, и более общих приспособлений на более глубоких (более абстрактных) уровнях. Эти явления в точности параллельны иерархии обучения, где протообучение касается специального факта или действия, а дейтерообучение касается контекстов и классов контекстов.

Интересно заметить, что акклиматизация совершается посредством ряда изменений в ряде областей (сердечная мышца, гемоглобин, мускулатура груди, и т.д.); между тем, чрезвычайные меры обычно бывают специфичны и ad hoc.*

При акклиматизации организм приобретает поверхностную гибкость ценой более глубокой жесткости. Теперь человек может использовать одышку и тахикардию как чрезвычайные меры в случае, если встретится с медведем, но он испытает неудобства, если спустится с гор, чтобы повидать старых друзей.

Полезно изложить этот вопрос более формально. Рассмотрим все предложения, какие могут понадобиться для описания организма. Их могут быть миллионы, но они будут связаны между собой цепями и циклами зависимостей. И в некоторой степени каждое из этих описательных предложений будет нормативным для данного организма; это значит, что будет максимальный и минимальный уровень, вне которых рассматриваемая переменная будет ядовита. Слишком много сахара в крови, или слишком мало – означает смерть, и так обстоит дело со всеми биологическими переменными. С каждой переменной связано нечто, что можно назвать метазначением; это значит, что для данного существа хорошо, если рассматриваемая переменная имеет это значение в середине ее диапазона, а не в максимуме или минимуме. И поскольку переменные связаны между собой цепями и циклами, отсюда следует, что некоторая переменная, принимающая максимальное или минимальное значение, должна отчасти зажимать все другие переменные той же цепи.

Любое изменение, стремящееся удержать переменные где-то в середине их диапазона, будет способствовать гибкости и выживанию. Но любое крайнее соматическое приспособление подтолкнет одну или несколько переменных к их крайним значениям. Поэтому всегда имеется в наличии некоторое напряжение, которое может быть смягчено генетическим изменением, при условии, что фенотипическое выражение этого изменения не будет дальнейшим увеличением уже существующего напряжения. Чтó здесь требуется – это генетическое изменение, которое установит новые допуски для верхних или нижних уровней переменной, или тех и других.

Если, например, перед генетическим изменением (посредством мутации, или, что более вероятно, перегруппировки генов) допуск для данной переменной составлял от 5 до 7, то генетическое изменение, которое установит новые пределы, от 7 до 9, будет представлять жизненно необходимое приспособление для данного существа, с трудом удерживавшего переменную около старого значения 7. Кроме того, если соматическое приспособление подтолкнет новое значение к 9, то возможно дальнейшее приращение жизнеспособности посредством дальнейшего генетического изменения, сдвигающего уровень допуска дальше по той же шкале.

В прошлом трудно было учесть эволюционные изменения, связанные с неупражнением. Легко было представить себе, что генетическое изменение в том же направлении, что и результаты упражнения или привычки, обычно будет иметь ценность для выживания, но более трудно было усмотреть, каким образом может окупаться генетическое повторение результатов неупражнения. Но оперируя логическим уровнем воображаемого генетического сообщения, можно придти к гипотезе, описывающей одной и той же парадигмой результаты обоих случаев – упражнения и неупражнения. Старая загадка, касающаяся слепоты пещерных животных и бедра весом в восемь унций* у восьмидесятитонного синего кита, не кажется при этом столь неразрешимой. Надо только предположить, что сохранение любого остаточного органа, скажем, десятифунтового¦ бедра у восьмидесятитонного кита, всегда подталкивает одну или несколько соматических переменных к некоторому верхнему или нижнему пределу допустимости, и тогда сдвиг этих допусков окажется приемлемым.

Однако, с точки зрения этой книги такое решение проблемы упражнения и неупражнения, озадачивающей с других позиций, представляет важную иллюстрацию отношения между генетической и соматической изменчивостью и, сверх того, отношения между высшими и низшими логическими типами в обширном разумном (mental) процессе, именуемом эволюцией.

Сообщение более высокого логического типа (например, более генетическое, чем соматическое указание) не должно упоминать те соматические переменные, допуски которых сдвигаются этим генетическим изменением. В самом деле, генетический сценарий, вероятно, не содержит ничего напоминающего существительные и местоимения человеческого языка. Сам я полагаю, что когда будет изучена почти неизвестная область процессов, которыми ДНК определяет эмбриологию, то окажется, что в ДНК нет речи ни о чем, кроме отношений. Если бы мы спросили ДНК, сколько пальцев должно быть у данного человеческого эмбриона, то получили бы, вероятно, ответ: «Четыре парных отношения между (пальцами)». А если бы мы спросили, сколько будет промежутков между пальцами, то получили бы ответ: «Три парных отношения между (промежутками)». В каждом случае определяются и устанавливаются лишь «отношения между». Вероятно, члены отношений – их конечные компоненты в материальном мире – никогда не упоминаются.

(Как заметят математики, описанная здесь гипотетическая система напоминает их теорию групп, где рассматриваются лишь отношения между операциями, преобразующими нечто, но никогда не это «нечто» само по себе).

По поводу этого аспекта коммуникации, идущей от соматического изменения к геному популяции через естественный отбор, важно заметить следующее:

а. Соматическая изменчивость иерархична по своей структуре.

б. Генетическая изменчивость представляет собой, в некотором смысле, наивысшую компоненту в этой иерархии (т.е. самую абстрактную и наименее обратимую).

в. Жесткости системы, составляющей обычную цену генетического изменения, можно хотя бы отчасти избежать, отсрочив это изменение до тех пор, пока не станет вероятно, что обстоятельство, с которым справляется на обратимом уровне сома, в самом деле постоянно; кроме того, этой цены можно избежать, действуя на фенотипическую переменную лишь косвенным образом. Как можно предполагать, генетическое изменение сдвигает лишь склонность или установку гомеостатического контроля фенотипической переменной (см. Словарь, «Логический тип»).

г. Этот переход от прямого контроля фенотипической переменной к контролю установки этой переменной, вероятно, также открывает и расширяет альтернативные возможности изменения. Контроль над допусками, касающимися размеров китового бедра, несомненно, достигается действием десятков различных генов, работающих совместно в этом отношении, но имеющих, может быть, совсем иные функции в других частях тела.

В переходе от простого соматического изменения к акклиматизации был замечен подобный же прорыв от единичного эффекта, которым эволюционист может заинтересоваться в данный момент, к многочисленным альтернативам или синергетическим* причинам. Можно ожидать, что в биологии переход от некоторого логического уровня к следующему высшему всегда должен сопровождаться таким расширением рассматриваемых связей.

Генетическая ассимиляция

Сказанное в разделе 2 почти во всех деталях иллюстрируется в знаменитых экспериментах моего друга Конрада Уоддингтона, демонстрирующих то, что он назвал генетической ассимиляцией. Самый впечатляющий из них начался с производства фенокопий, являющихся результатом воздействия на плодовую мушку гена под названием bithorax. Все обычные члены обширного порядка Diptera*, за исключением бескрылых блох, имеют два крыла и вторую пару крыльев, редуцированную до небольших стержней с шишками на концах, служащими, как полагают, органами равновесия. Под действием гена bithorax рудименты крыльев в третьем сегменте грудной клетки становятся почти совершенными крыльями, и получается четырехкрылая муха.

Эта очень глубокая модификация фенотипа, пробуждающая весьма древнюю, подавленную теперь морфологию, могла быть также произведена соматическим изменением. Когда куколок отравляли этиловым эфиром в надлежащих дозах, то мухи, вылупившись, имели вид bithorax. Это значит, что признак bithorax был известен и как продукт генетики, и как продукт резкого нарушения эпигенеза.

Уоддингтон выполнил свои эксперименты на многочисленных популяциях мух в больших клетках. В каждом поколении он подвергал эти популяции эфирному отравлению, чтобы произвести формы bithorax. И в каждом поколении он отбирал тех мух, которые наилучшим образом представляли его идеал совершенного развития bitorax. (Все они были существа весьма жалкого вида, совершенно неспособные летать). Из этих отобранных индивидов он выводил следующее поколение, чтобы подвергнуть его, в свою очередь, действию эфира, а затем отбору.

Из каждого поколения куколок он отделял, перед отравлением, несколько экземпляров и давал им вывестись в нормальных условиях. В конце концов, после тридцати поколений, полученных в этих экспериментах, формы bithorax начали появляться в не подвергавшейся обработке контрольной группе. Как показало потомство этих экземпляров, они были произведены в действительности не единственным геном bithorax, а комплексом генов, совместно создававших четырехкрылых мух. В этом эксперименте не было свидетельства о каком-либо прямом наследовании приобретенных признаков. Уоддингтон предположил, что физиологический ущерб, причиненный организмам, не повлиял на перегруппировку генов в половой репродукции и на частоту мутаций. Его объяснение состояло в том, что отбор в астрономических масштабах, возможно, устраняющий из потенциального существования много тонн мух, отобрал ограниченное число насекомых с bithorax. Он полагал, что это справедливо было рассматривать как отбор индивидов с наинизшим порогом произведения аномалии bithorax.

Мы не знаем, к чему привел бы эксперимент без отбора Уоддингтоном «наилучших» bithorax. Может быть, за тридцать поколений он произвел бы популяцию, иммунную по отношению к эфиру, или, как можно себе также представить, популяцию, нуждающуюся в эфире. Но возможно – если модификация bithorax, подобно большинству соматических изменений, отчасти адаптивна – что популяция, подобно экспериментальным популяциям Уоддингтона, произвела бы генетические копии (генокопии) результатов эфирной обработки.

Этим новым словом «генокопия» я хочу подчеркнуть, что соматическое изменение может в действительности предшествовать генетическому, так что более уместно рассматривать в качестве копии генетическое изменение. Иными словами, соматические изменения могут отчасти определять пути эволюции; и это будет еще больше проявляться в более обширных гештальтах (in larger gestalten), чем в рассматриваемых здесь. Это значит, что мы должны снова расширить набор логических типов в нашей гипотезе. Таким образом, можно различить три этапа в построении теории:

а. На индивидуальном уровне окружающая среда и опыт могут вызвать соматическое изменение, но не могут повлиять на гены индивида. Не существует прямого наследования в смысле Ламарка, и такое наследование без отбора необратимо уничтожило бы соматическую гибкость.

б. На уровне популяций, при надлежащем отборе фенотипов, окружающая среда и опыт порождают более приспособленных индивидов, над которыми может работать отбор. В этом смысле популяция ведет себя как ламарков индивид. Несомненно, именно по этой причине биологический мир выглядит как результат ламарковой эволюции.

в. Но если мы хотим доказать, что соматические изменения играют первичную роль в направлении эволюционного изменения, то для этого требуется другой уровень логических типов – более широкий гештальт. Для этого приходится привлечь коэволюцию, предположив, что окружающая экосистема или некоторые смежные виды изменяются, чтобы приспособиться к соматическим изменениям индивидов. Можно представить себе, что такое изменение окружения действует как матрица, предпочитающая какую-нибудь генокопию соматического изменения.



Последнее изменение этой страницы: 2016-06-29; просмотров: 84; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.92.28.52 (0.014 с.)